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Notions of convergence for random variables

1 Convergence of random variables defined on the same probability space

Let (Xn)n≥1 be a sequence of random variables defined on the same probability space, with values in Rn equipped with the
Borel σ-field. We denote by | · | any norm on Rn (take for example the standard Euclidean ∥ · ∥2 norm).

Almost sure convergence. We say that Xn converges almost surely to X if with probability 1, Xn converges to X as n→ ∞,

that is if P
(
Xn −→

n→∞
X
)
= 1, or, equivalently,

P
(
{ω ∈ Ω : Xn(ω) −→

n→∞
X(ω)}

)
= 1,

or, equivalently,
P ({ω ∈ Ω : ∀ε > 0,∃N > 0 such that n ≥ N =⇒ |Xn(ω)−X(ω)| ≤ ε}) = 1.

�WARNING. The rank N in the event {ω ∈ Ω : ∀ε > 0,∃N > 0 such that n ≥ N ⇒ |Xn(ω)−X(ω)| ≤ ε} depends not only on
ε but also a priori of ω (meaning that it is random).

Convergence in probability. We say that Xn converges in probability to X if for every ε > 0,

P (|Xn −X| > ε) −→
n→∞

0.

Convergence in Lp for p ≥ 1. This notion is commonly defined when the random variables are real-valued. In this case,
we say that Xn converges in Lp to X if E [|Xn −X|p] → 0 as n→ ∞.

�WARNING. If Xn converges in L1 to X, then E [Xn] → E [X], but the converse is false in general.

2 Links between the different notions of convergence

We have

almost sure convergence =⇒ convergence in probability

and

convergence in Lp =⇒ convergence in probability

3 In practice, how to show an almost sure convergence?

Strong law of large numbers. Let (Xn)n≥1 be a sequence of i.i.d. real valued random variables. Assume that X1 is
integrable. Then

X1 +X2 + · · ·+Xn

n
−→
n→∞

E [X1]

almost surely.

By applying Borel-Cantelli lemmas. It is sometimes possible to show almost sure convergence by hand by using Borel–
Cantelli. For example, if for every ε > 0 we have ∑

n≥1

P (|Xn −X| > ε) <∞,

then Xn converges almost surely to X.
In practice, to bound quantities of the form P (|Xn −X| > ε) (especially when X is constant), one often uses Markov’s in-

equality P (|Xn −X| > ε) < E[|Xn−X|]
ε (first order moment method), Bienaymé-Tchebychev’s inequality P (|Xn −X| > ε) =

P
(
(Xn −X)2 > ε2

)
<

E[(Xn−X)2]
ε2 (second order moment method) or the fact that for every λ > 0, P (|Xn −X| > ε) =

P
(
eλ|Xn−X| ≥ eλε

)
≤ e−λεE

[
eλ|Xn−X|] by choosing a suitable λ (Chernoff’s method or large deviations).
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By composition. If Xn → X almost surely and if f is continuous, then f(Xn) → f(X) almost surely (it is actually possible
to relax the assumption “f is continuous” to “f is almost surely continuous at X”).

By joint convergence. If Xn → X almost surely and if Yn → Y almost surely, then (Xn, Yn) → (X,Y ) almost surely.

By taking subsequences. If Xn → X in probability, then there exists a subsequence of (Xn) converging almost surely to X.

To show that events are almost sure or negligeable, one often uses the following simple result. Let A and B be two events
such that A ⊂ B.

– If P (A) = 1, then P (B) = 1.

– If P (B) = 0, then P (A) = 0.

4 In practice, how to show a convergence in probability?

By using an alternative criterion. Xn converges in probability to X if and only if E [min(|Xn −X|, 1)] → 0.

By using the subsequence lemma. Xn converges in probability to X if and only if of every subsequence of (Xn) it is
possible to re-extract a subsequence converging almost surely to X (that is, for every increasing function ϕ : N∗ → N∗ there
exists an increasing function ψ : N∗ → N∗ such thatXϕ(ψ(n)) converges almost surely to X).

By composition. If Xn → X in probability and if f is continuous, then f(Xn) → f(X) in probability.

By joint convergence. If Xn → X in probability and if Yn → Y in probability, then (Xn, Yn) → (X,Y ) in probability.

Show a stronger convergence. For instance by showing that Xn → X a.s. or in L1 or in L2 (using for instance Markov’s
inequality).

5 In practice, how to show a convergence in L1?

Enhance a convergence in probability to an L1 convergence (1/2). One often uses the following result (which is an
extension of the dominated convergence theorem):

– if Xn converges in probability to X,

– if (Xn)n≥1 is uniformly integrable (meaning that supn≥1 E
[
|Xn|1|Xn|>A

]
→ 0 as A→ ∞)

then Xn converges to X in L1.
Remark. The first assumption is satisfied if Xn → X almost surely. The second assumption is satisfied in the following cases:

– if the random variables (Xn) are uniformly bounded, meaning that there exists a > 0 such that P (|Xn| ≤ a) = 1 pour tout
n ≥ 1;

– if there exists a nonnegative integrable random variable Z, independent of n such that |Xn| ≤ Z,

– if there exists ε > 0 such that supn≥1 E
[
|Xn|1+ε

]
<∞.

Enhance an almost sure convergence to an L1 convergence (2/2). For nonnegative random variables, Scheffé’s lemma
(Exercise sheet 7, exercise 2) states:

– if Xn converges almost surely to X,

– if Xn ≥ 0 for every n ≥ 1,

– if E [Xn] → E [X].

Then Xn converges to X in L1.
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