Problems and suggested solution Question 1

[10 Points] Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables such that for every $n \geq 1$ we have $\mathbb{P}\left(X_{n}=n^{2}-1\right)=\frac{1}{n^{2}}$ and $\mathbb{P}\left(X_{n}=-1\right)=1-\frac{1}{n^{2}}$. For $n \geq 1$ we define $S_{n}=X_{1}+\cdots+X_{n}$.
(1) $[1$ Point $]$ Show that $\mathbb{E}\left[X_{n}\right]=0$ for every $n \geq 1$.
(2) [3 Points] State the Borel-Cantelli lemmas.
(3) [5 Points] Show that almost surely

$$
\frac{S_{n}}{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow}-1
$$

(4) [1 Point] Why is it not possible to apply the strong law of large numbers? Justify your answer.

Solution:

(1) We have

$$
\mathbb{E}\left[X_{n}\right]=\left(n^{2}-1\right) \mathbb{P}\left(X_{n}=n^{2}-1\right)-1 \cdot \mathbb{P}\left(X_{n}=-1\right)=\left(n^{2}-1\right) \cdot \frac{1}{n^{2}}-1\left(1-\frac{1}{n^{2}}\right)=0
$$

(2) Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of events.

Borel-Cantelli 1. If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left(\limsup A_{n}\right)=0$.
Borel-Cantelli 2. If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$ and if $\left(A_{n}\right)_{n \geq 1}$ are independent, then $\mathbb{P}\left(\lim \sup A_{n}\right)=$ 1.
(3) Set $A_{n}=\left\{X_{n}=n^{2}-1\right\}$. Then since $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$, by Borel-Cantelli 1. we have $\mathbb{P}\left(\lim \sup A_{n}\right)=0$. As a consequence, almost surely A_{n} happens finitely often. Thus almost surely there exists $N \geq 1$ such that $n \geq N$ implies $X_{n}=-1$. Thus, almosty surely, for $n \geq N$:

$$
\frac{S_{n}}{n}=\frac{S_{N}}{n}-\frac{n-N}{n}
$$

which tends to -1 as $n \rightarrow \infty$.
(4) The random variables $\left(X_{i}\right)_{i \geq 1}$ do not have the same law, so the strong law of large numbers cannot be applied.

Question 2

[5 Points] Let (E, \mathcal{A}) and (F, \mathcal{B}) be two sets equipped with σ-fields. Recall that on $E \times F$, the product σ-field is defined by $\mathcal{A} \otimes \mathcal{B}=\sigma(\{A \times B: A \in \mathcal{A}, B \in \mathcal{B}\})$. For $C \in \mathcal{A} \otimes \mathcal{B}$ and $x \in E$, we set

$$
C_{x}=\{y \in F:(x, y) \in C\} .
$$

(1) [3 Points] Fix $x \in E$. Show that $\mathcal{U}=\left\{C \in \mathcal{A} \otimes \mathcal{B}: C_{x} \in \mathcal{B}\right\}$ is a σ-field on $E \times F$.
(2) [2 Points] Show that for every $C \in \mathcal{A} \otimes \mathcal{B}$ and $x \in E$ we have $C_{x} \in \mathcal{B}$.

Solution:

(1) We check the three items of the definition of a σ-field:

- $E \times F \in \mathcal{U}$ since $(E \times F)_{x}=F \in \mathcal{B}$.
- If $C \in \mathcal{U}$, then $\left(C^{c}\right)_{x}=\{y \in F:(x, y) \notin C\}=\left(C_{x}\right)^{c} \in \mathcal{B}$ because \mathcal{B} is stable by complementation.
- If $\left(C_{i}\right)_{i \geq 1}$ is a sequence of elements of \mathcal{U}, then

$$
\left(\bigcup_{i \geq 1} C_{i}\right)_{x}=\left\{y \in F:(x, y) \in \bigcup_{i \geq 1} C_{i}\right\}=\bigcup_{i \geq 1}\left(C_{i}\right)_{x} \in \mathcal{B}
$$

because \mathcal{B} is stable by countable unions.
(2) Fix $x \in E$. Observe that \mathcal{U} contains all elements of the form $A \times B$ with $A \in \mathcal{A}, B \in \mathcal{B}$. Indeed, $(A \times B)_{x}=B$ if $x \in A$ and $(A \times B)_{x}=\varnothing$ if $x \notin A$. As a consequence, since \mathcal{U} is a σ-field by (1), \mathcal{U} contains $\sigma(\{A \times B: A \in \mathcal{A}, B \in \mathcal{B}\})$, which is precisely $\mathcal{A} \otimes \mathcal{B}$. This implies that for every $C \in \mathcal{A} \otimes \mathcal{B}$ we have $C_{x} \in \mathcal{B}$.

Question 3

[20 Points] Let $\lambda>0$ and let X be a real-valued random variable such that $\mathbb{P}(X \geq a)=a^{-\lambda}$ for all $a \geq 1$. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables all having the same law as X. We define for every $n \geq 1$

$$
T_{n}=\left(\prod_{i=1}^{n} X_{i}\right)^{1 / n}
$$

Remark: In the following, Part 1 and Part 2 can be treated independently: question (6) can be solved without using the other questions.

Part 1.
(1) [2 Points] Show that X has a density and give its expression.
(2) [4 Points] As $n \rightarrow \infty$, does T_{n} converge almost surely? Justify your answer.
(3) [1 Point] As $n \rightarrow \infty$, does T_{n} converge in probability? Justify your answer.
(4) [4 Points] Does $\mathbb{E}\left[T_{n}^{2}\right]$ converge as $n \rightarrow \infty$? Justify your answer.
(5) [3 Points] As $n \rightarrow \infty$, does T_{n} converge in L^{1} ? Justify your answer.

Part 2.
(6) [6 Points] Show that $\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{n^{1 / \lambda}}$ converges in distribution as $n \rightarrow \infty$.

Solution:

(1) Observe that the cumulative distribution function of X (cdf) of X is given by $\mathbb{P}(X \leq a)=$ $1-a^{-\lambda}$ for $a \geq 1$ and $\mathbb{P}(X \leq a)=0$ for $a<1$. The cdf is piecewise C^{1}, so X has a density given by $-\mathbb{1}_{x \geq 1} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{-\lambda}=\mathbb{1}_{x \geq 1} \frac{\lambda}{x^{\lambda+1}}$
(2) Yes, T_{n} converges almost surely. Observe that $\mathbb{P}(X \geq 1)=1$, and that $\mathbb{P}(\ln (X) \geq a)=e^{-\lambda a}$ for every $a \geq 0$. Thus $\ln (X)$ follows an exponential law of parameter λ. In addition,

$$
\ln \left(T_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ln \left(X_{i}\right) .
$$

By the composition principle, the random variables $\ln \left(X_{1}\right), \ldots, \ln \left(X_{n}\right)$ are independent with same law distributed as an exponential random variable of parameter λ. By the strong law of large numbers, $\ln \left(T_{n}\right)$ converges almost surely to $1 / \lambda$. By continuity of the exponential function, it follows that T_{n} converges almost surely to $\exp (1 / \lambda)$.
(3) Yes, T_{n} converges in probability to $\exp (1 / \lambda)$: we saw in the lecture that almost sure convergence implies convergence in probability.
(4) Write

$$
\mathbb{E}\left[T_{n}^{2}\right]=\mathbb{E}\left[\prod_{i=1}^{n} X_{i}^{2 / n}\right]=\prod_{i=1}^{n} \mathbb{E}\left[X_{i}^{2 / n}\right]=\mathbb{E}\left[X^{2 / n}\right]^{n}
$$

where we have used the independence of $\left(X_{i}\right)_{1 \leq i \leq n}$ for the second equality and the fact that these random variables all have the same law for the last equality. To compute $\mathbb{E}\left[X^{2 / n}\right]$ using (1) and the transfer theorem:

$$
\mathbb{E}\left[X^{2 / n}\right]=\int_{1}^{\infty} x^{2 / n} \cdot \frac{\lambda}{x^{\lambda+1}} \mathrm{~d} x=\int_{1}^{\infty} \frac{\lambda}{x^{\lambda-2 / n+1}} \mathrm{~d} x
$$

which is finite for n such that $\lambda-2 / n>0$. Thus for n sufficiently large $\mathbb{E}\left[X^{2 / n}\right]<\infty$ and

$$
\mathbb{E}\left[X^{2 / n}\right]=\frac{\lambda n}{\lambda n-2}=1+\frac{2}{\lambda n-2} .
$$

Thus, using the Taylor expansion $\ln (1+x)=x+o(x)$ as $x \rightarrow 0$:

$$
\begin{aligned}
\mathbb{E}\left[T_{n}^{2}\right]=\left(1+\frac{2}{\lambda n-2}\right)^{n}=\exp \left(n \ln \left(1+\frac{2}{\lambda n-2}\right)\right) & =\exp \left(n\left(\frac{2}{\lambda n-2}+o\left(\frac{1}{n}\right)\right)\right) \\
& =\exp \left(\frac{2}{\lambda}+o(1)\right)
\end{aligned}
$$

which converges to $\exp (2 / \lambda)$ so the answer of the question is yes.
(5) The answer is yes.

Solution 1. We check that $\left(T_{n}\right)_{n \geq 1}$ converges in probability and is uniformly integrable. The convergence in probability has been established in (2) and uniform integrability comes from the fact that $\left(T_{n}\right)$ is bounded in L^{2} since $\mathbb{E}\left[T_{n}^{2}\right]$ converges as $n \rightarrow \infty$ (we saw in the lecture that a sequence of random variables bounded in L^{p} for $p>1$ is uniformly integrable).
For Solutions 2 and 3 , we first show that $\mathbb{E}\left[T_{n}\right] \rightarrow \exp (1 / \lambda)$. As in question (4), we have

$$
\mathbb{E}\left[T_{n}\right]=\mathbb{E}\left[\prod_{i=1}^{n} X_{i}^{1 / n}\right]=\prod_{i=1}^{n} \mathbb{E}\left[X_{i}^{1 / n}\right]=\mathbb{E}\left[X^{1 / n}\right]^{n}
$$

and we similarly compute $\mathbb{E}\left[X^{1 / n}\right]$:

$$
\mathbb{E}\left[X^{1 / n}\right]=\int_{1}^{\infty} x^{1 / n} \cdot \frac{\lambda}{x^{\lambda+1}} \mathrm{~d} x=\frac{\lambda n}{\lambda n-1}=1+\frac{1}{\lambda n-1} .
$$

Thus, similarly to (4):

$$
\begin{aligned}
\mathbb{E}\left[T_{n}\right]=\left(1+\frac{1}{\lambda n-1}\right)^{n}=\exp \left(n \ln \left(1+\frac{1}{\lambda n-1}\right)\right) & =\exp \left(n\left(\frac{1}{\lambda n-1}+o\left(\frac{1}{n}\right)\right)\right) \\
& =\exp \left(\frac{1}{\lambda}+o(1)\right)
\end{aligned}
$$

This entails

$$
\mathbb{E}\left[T_{n}\right] \underset{n \rightarrow \infty}{\longrightarrow} \exp (1 / \lambda),
$$

Solution 2. We show that $\mathbb{E}\left[\left(T_{n}-\exp (1 / \lambda)^{2}\right] \rightarrow 0\right.$. Indeed, then by the Cauchy-Schwarz inequality $\mathbb{E}\left[\left|T_{n}-\exp (1 / \lambda)\right|\right] \leq \mathbb{E}\left[\left(T_{n}-\exp (1 / \lambda)\right)^{2}\right]^{1 / 2} \rightarrow 0$. To this end just write

$$
\mathbb{E}\left[\left(T_{n}-\exp (1 / \lambda)^{2}\right]=\mathbb{E}\left[T_{n}^{2}\right]-2 \exp (1 / \lambda) \mathbb{E}\left[T_{n}\right]+\exp (2 / \lambda) \quad \underset{n \rightarrow \infty}{\longrightarrow} 0\right.
$$

since $\mathbb{E}\left[T_{n}^{2}\right] \rightarrow \exp (2 / \lambda)$ and $\mathbb{E}\left[T_{n}\right] \rightarrow \exp (1 / \lambda)$.
Solution 3. We have $T_{n} \geq 0, T_{n} \rightarrow \exp (1 / \lambda)$ almost surely and $\mathbb{E}\left[T_{n}\right] \rightarrow \exp (1 / \lambda)$. Then Scheffé's lemma (seen in the exercise sheet) implies that $T_{n} \rightarrow \exp (1 / \lambda)$ in L^{1}.
(6) We first compute the point-wise limit of the cdf of $\max \left(X_{1}, \ldots, X_{n}\right)$. First, for $a \leq 0$ we have $\mathbb{P}\left(\max \left(X_{1}, \ldots, X_{n}\right) / n^{1 / \lambda} \leq a\right)=0$. Next, for $a>0$, by independence we have for n sufficiently large so that $a n^{1 / \lambda} \geq 1$:

$$
\begin{aligned}
\mathbb{P}\left(\max \left(X_{1}, \ldots, X_{n}\right) / n^{1 / \lambda} \leq a\right) & =\mathbb{P}\left(X_{1} \leq a, \cdots, X_{n} \leq a n^{1 / \lambda}\right) \\
& =\mathbb{P}\left(X_{1} \leq a n^{1 / \lambda}\right)^{n} \\
& =\left(1-\mathbb{P}\left(X_{1}>a n^{1 / \lambda}\right)\right)^{n} \\
& =\left(1-\frac{1}{\left(a n^{1 / \lambda}\right)^{\lambda}}\right)^{n}
\end{aligned}
$$

because $\mathbb{P}\left(X_{1}=a n^{1 / \lambda}\right)=0$. Thus

$$
\begin{aligned}
\mathbb{P}\left(\max \left(X_{1}, \ldots, X_{n}\right) / n^{1 / \lambda} \leq a\right) & =\left(1-\frac{1}{a^{\lambda} n}\right)^{n} \\
& =\exp \left(n \ln \left(1-\frac{1}{a^{\lambda} n}\right)\right) \\
& =\exp \left(n\left(-\frac{1}{a^{\lambda} n}+o\left(\frac{1}{n}\right)\right)\right)
\end{aligned}
$$

so that

$$
\mathbb{P}\left(\max \left(X_{1}, \ldots, X_{n}\right) / n^{1 / \lambda} \leq a\right) \underset{n \rightarrow \infty}{\longrightarrow} e^{-a^{-\lambda}} .
$$

Now observe that $F(a)=e^{-a^{-\lambda}} \mathbb{1}_{a \geq 0}$ is the cdf of a certain random variable X. Indeed, F has limit 0 at $-\infty$, limit 1 at ∞, is continuous and weakly increasing. We conclude that $\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{n^{1 / \lambda}}$ converges in distribution to X.

Question 4

[12 Points] Let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of independent and identically distributed random variables, all following the uniform distribution on $[0,1]$. Fix $x_{0} \in(0,1)$. We define by induction a sequence of random variables $\left(X_{n}\right)_{n \geq 0}$ as follows: $X_{0}=x_{0}$, and for $n \geq 0$:

$$
X_{n+1}=\mathbb{1}_{U_{n+1}>X_{n}} \frac{X_{n}}{2}+\mathbb{1}_{U_{n+1} \leq X_{n}} \frac{X_{n}+1}{2}
$$

In other words,

$$
X_{n+1}=\left\{\begin{array}{lll}
\frac{X_{n}}{2} & \text { if } & U_{n+1}>X_{n} \\
\frac{X_{n}+1}{2} & \text { if } & U_{n+1} \leq X_{n}
\end{array}\right.
$$

Finally, define $\mathcal{F}_{0}=\{\varnothing, \Omega\}$ and $\mathcal{F}_{n}=\sigma\left(U_{1}, \ldots, U_{n}\right)$ for $n \geq 1$.
In this exercise, you may use without proof the following fact (seen in one of the training exercises): Let X, Y be two real-valued random variables, and \mathcal{A} be a σ-field. Assume that Y is independent of \mathcal{A} and that X is \mathcal{A}-measurable. Then for any measurable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{+}$, we have

$$
\mathbb{E}[g(X, Y) \mid \mathcal{A}]=h(X) \quad \text { a.s., } \quad \text { where } \quad h(x)=\mathbb{E}[g(x, Y)]
$$

(1) [4 Points] Show that $\left(X_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-martingale.
(2) [2 Points] Show that $\left(X_{n}\right)_{n \geq 0}$ converges almost surely and in L^{1}.
(3) [2 Points] Show that for every $n \geq 0$ we have $2\left|X_{n+1}-X_{n}\right| \geq \min \left(X_{n}, 1-X_{n}\right)$.
(4) [4 Points] Denote by X_{∞} the almost sure limit of $\left(X_{n}\right)_{n \geq 0}$. Show that X_{∞} follows a Bernoulli distribution and find its parameter, justifying your answer.

Solution:

(1) First of all, using the fact that $0 \leq x / 2 \leq 1$ and $0 \leq(x+1) / 2 \leq 1$ for every $0 \leq x \leq 1$, we readily check by induction that for every $n \geq 0$ we have $0 \leq X_{n} \leq 1$. As a consequence X_{n} is bounded and thus integrable.
Next, by induction, we check that X_{n} is \mathcal{F}_{n} measurable:

- since $X_{0}=x_{0}$ is constant, it is indeed \mathcal{F}_{0} measurable.
- assume that X_{n} is \mathcal{F}_{n} measurable. Then by definition of X_{n+1}, X_{n+1} is $\sigma\left(U_{n+1}, X_{n}\right)$ measurable as a measurable function of $\left(U_{n+1}, X_{n}\right)$. But both X_{n} and U_{n+1} are \mathcal{F}_{n+1} measurable, so $\sigma\left(U_{n+1}, X_{n}\right) \subset \mathcal{F}_{n+1}$, which shows that X_{n+1} is \mathcal{F}_{n+1} measurable.

Finally we check that for every $n \geq 0$ we have $\mathbb{E}\left[X_{n+1} \mid F_{n}\right]=X_{n}$. To this end, write by linearity of conditional expectation and using the fact that X_{n} is \mathcal{F}_{n} measurable:

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\mathbb{1}_{U_{n+1}>X_{n}} \mid \mathcal{F}_{n}\right] \frac{X_{n}}{2}+\mathbb{E}\left[\mathbb{1}_{U_{n+1} \leq X_{n}} \mid \mathcal{F}_{n}\right] \frac{X_{n}+1}{2}
$$

Using the fact given in the statement of the exercise twice, we get

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=\left(1-X_{n}\right) \cdot \frac{X_{n}}{2}+X_{n} \cdot \frac{X_{n}+1}{2}=X_{n}
$$

which completes the proof.
(2) We have seen that $\left(X_{n}\right)_{n \geq 0}$ takes its values in $[0,1]$, so that it is a bounded martingale. In converges therefore almost surely and in L^{1}.
(3) We have either $X_{n+1}=X_{n} / 2$ or $X_{n+1}=\left(X_{n}+1\right) / 2$, so that $2\left|X_{n+1}-X_{n}\right|$ is equal to either X_{n} or $1-X_{n}$. Thus $2\left|X_{n+1}-X_{n}\right|$ is at least equal to the minimum of these two quantities.
(4) By passing to the limit in (3), we get that almost $\operatorname{surely} \min \left(X_{\infty}, 1-X_{\infty}\right) \leq 0$. Since $X_{\infty} \in[0,1]$ we conclude that $\mathbb{P}\left(X_{\infty} \in\{0,1\}\right)=1$, so that X_{∞} follows a Bernoulli distribution. Its parameter is equal to its mean $\mathbb{E}\left[X_{\infty}\right]$, which by L^{1} convergence is the limit of $\mathbb{E}\left[X_{n}\right]$. But since $\left(X_{n}\right)$ is a martingale we have $\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{0}\right]=x_{0}$ for every $n \geq 0$. We conclude that X_{∞} is a Bernoulli random variable with parameter x_{0}.

Intentionally blank page

