Problems and suggested solution Question 1

[10 Points] Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables such that for every $n \geq 1$ we have $\mathbb{P}(X_n = n^2 - 1) = \frac{1}{n^2}$ and $\mathbb{P}(X_n = -1) = 1 - \frac{1}{n^2}$. For $n \geq 1$ we define $S_n = X_1 + \cdots + X_n$.

(1) **[1 Point]** Show that $\mathbb{E}[X_n] = 0$ for every $n \ge 1$.

- (2) [3 Points] State the Borel-Cantelli lemmas.
- (3) [5 Points] Show that almost surely

$$\frac{S_n}{n} \quad \xrightarrow[n \to \infty]{} \quad -1.$$

(4) [1 Point] Why is it not possible to apply the strong law of large numbers? Justify your answer.Solution:

(1) We have

$$\mathbb{E}[X_n] = (n^2 - 1)\mathbb{P}\left(X_n = n^2 - 1\right) - 1 \cdot \mathbb{P}\left(X_n = -1\right) = (n^2 - 1) \cdot \frac{1}{n^2} - 1\left(1 - \frac{1}{n^2}\right) = 0.$$

(2) Let $(A_n)_{n\geq 1}$ be a sequence of events.

Borel-Cantelli 1. If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(\limsup A_n) = 0$.

Borel-Cantelli 2. If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$ and if $(A_n)_{n \ge 1}$ are independent, then $\mathbb{P}(\limsup A_n) = 1$.

(3) Set $A_n = \{X_n = n^2 - 1\}$. Then since $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, by Borel-Cantelli 1. we have $\mathbb{P}(\limsup A_n) = 0$. As a consequence, almost surely A_n happens finitely often. Thus almost surely there exists $N \ge 1$ such that $n \ge N$ implies $X_n = -1$. Thus, almosty surely, for $n \ge N$:

$$\frac{S_n}{n} = \frac{S_N}{n} - \frac{n-N}{n},$$

which tends to -1 as $n \to \infty$.

(4) The random variables $(X_i)_{i\geq 1}$ do not have the same law, so the strong law of large numbers cannot be applied.

Question 2

[5 Points] Let (E, \mathcal{A}) and (F, \mathcal{B}) be two sets equipped with σ -fields. Recall that on $E \times F$, the product σ -field is defined by $\mathcal{A} \otimes \mathcal{B} = \sigma(\{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\})$. For $C \in \mathcal{A} \otimes \mathcal{B}$ and $x \in E$, we set

 $C_x = \{ y \in F : (x, y) \in C \}.$

- (1) [3 Points] Fix $x \in E$. Show that $\mathcal{U} = \{C \in \mathcal{A} \otimes \mathcal{B} : C_x \in \mathcal{B}\}$ is a σ -field on $E \times F$.
- (2) [2 Points] Show that for every $C \in \mathcal{A} \otimes \mathcal{B}$ and $x \in E$ we have $C_x \in \mathcal{B}$.

Solution:

(1) We check the three items of the definition of a σ -field:

- $\quad E \times F \in \mathcal{U} \text{ since } (E \times F)_x = F \in \mathcal{B}.$
- If $C \in \mathcal{U}$, then $(C^c)_x = \{y \in F : (x, y) \notin C\} = (C_x)^c \in \mathcal{B}$ because \mathcal{B} is stable by complementation.
- If $(C_i)_{i\geq 1}$ is a sequence of elements of \mathcal{U} , then

$$\left(\bigcup_{i\geq 1} C_i\right)_x = \left\{y\in F: (x,y)\in \bigcup_{i\geq 1} C_i\right\} = \bigcup_{i\geq 1} (C_i)_x \in \mathcal{B}$$

because \mathcal{B} is stable by countable unions.

(2) Fix $x \in E$. Observe that \mathcal{U} contains all elements of the form $A \times B$ with $A \in \mathcal{A}, B \in \mathcal{B}$. Indeed, $(A \times B)_x = B$ if $x \in A$ and $(A \times B)_x = \emptyset$ if $x \notin A$. As a consequence, since \mathcal{U} is a σ -field by (1), \mathcal{U} contains $\sigma(\{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\})$, which is precisely $\mathcal{A} \otimes \mathcal{B}$. This implies that for every $C \in \mathcal{A} \otimes \mathcal{B}$ we have $C_x \in \mathcal{B}$.

Question 3

[20 Points] Let $\lambda > 0$ and let X be a real-valued random variable such that $\mathbb{P}(X \ge a) = a^{-\lambda}$ for all $a \ge 1$. Let $(X_n)_{n\ge 1}$ be a sequence of independent random variables all having the same law as X. We define for every $n \ge 1$

$$T_n = \left(\prod_{i=1}^n X_i\right)^{1/n}$$

Remark: In the following, Part 1 and Part 2 can be treated independently: question (6) can be solved without using the other questions.

Part 1.

- (1) [2 Points] Show that X has a density and give its expression.
- (2) [4 Points] As $n \to \infty$, does T_n converge almost surely? Justify your answer.
- (3) [1 Point] As $n \to \infty$, does T_n converge in probability? Justify your answer.
- (4) [4 Points] Does $\mathbb{E}[T_n^2]$ converge as $n \to \infty$? Justify your answer.
- (5) [3 Points] As $n \to \infty$, does T_n converge in L^1 ? Justify your answer.

Part 2.

(6) [6 Points] Show that $\frac{\max(X_1,\dots,X_n)}{n^{1/\lambda}}$ converges in distribution as $n \to \infty$.

Solution:

- (1) Observe that the cumulative distribution function of X (cdf) of X is given by $\mathbb{P}(X \leq a) = 1 a^{-\lambda}$ for $a \geq 1$ and $\mathbb{P}(X \leq a) = 0$ for a < 1. The cdf is piecewise C^1 , so X has a density given by $-\mathbb{1}_{x \geq 1} \frac{\mathrm{d}}{\mathrm{d}x} x^{-\lambda} = \mathbb{1}_{x \geq 1} \frac{\lambda}{x^{\lambda+1}}$
- (2) Yes, T_n converges almost surely. Observe that $\mathbb{P}(X \ge 1) = 1$, and that $\mathbb{P}(\ln(X) \ge a) = e^{-\lambda a}$ for every $a \ge 0$. Thus $\ln(X)$ follows an exponential law of parameter λ . In addition,

$$\ln(T_n) = \frac{1}{n} \sum_{i=1}^n \ln(X_i).$$

By the composition principle, the random variables $\ln(X_1), \ldots, \ln(X_n)$ are independent with same law distributed as an exponential random variable of parameter λ . By the strong law of large numbers, $\ln(T_n)$ converges almost surely to $1/\lambda$. By continuity of the exponential function, it follows that T_n converges almost surely to $\exp(1/\lambda)$.

- (3) Yes, T_n converges in probability to $\exp(1/\lambda)$: we saw in the lecture that almost sure convergence implies convergence in probability.
- (4) Write

$$\mathbb{E}\left[T_n^2\right] = \mathbb{E}\left[\prod_{i=1}^n X_i^{2/n}\right] = \prod_{i=1}^n \mathbb{E}\left[X_i^{2/n}\right] = \mathbb{E}\left[X^{2/n}\right]^n,$$

where we have used the independence of $(X_i)_{1 \le i \le n}$ for the second equality and the fact that these random variables all have the same law for the last equality. To compute $\mathbb{E}\left[X^{2/n}\right]$ using (1) and the transfer theorem:

$$\mathbb{E}\left[X^{2/n}\right] = \int_{1}^{\infty} x^{2/n} \cdot \frac{\lambda}{x^{\lambda+1}} \mathrm{d}x = \int_{1}^{\infty} \frac{\lambda}{x^{\lambda-2/n+1}} \mathrm{d}x$$

which is finite for n such that $\lambda - 2/n > 0$. Thus for n sufficiently large $\mathbb{E}\left[X^{2/n}\right] < \infty$ and

$$\mathbb{E}\left[X^{2/n}\right] = \frac{\lambda n}{\lambda n - 2} = 1 + \frac{2}{\lambda n - 2}$$

Thus, using the Taylor expansion $\ln(1+x) = x + o(x)$ as $x \to 0$:

$$\mathbb{E}\left[T_n^2\right] = \left(1 + \frac{2}{\lambda n - 2}\right)^n = \exp\left(n\ln\left(1 + \frac{2}{\lambda n - 2}\right)\right) = \exp\left(n\left(\frac{2}{\lambda n - 2} + o\left(\frac{1}{n}\right)\right)\right)$$
$$= \exp\left(\frac{2}{\lambda} + o(1)\right)$$

which converges to $\exp(2/\lambda)$ so the answer of the question is yes.

(5) The answer is yes.

Solution 1. We check that $(T_n)_{n\geq 1}$ converges in probability and is uniformly integrable. The convergence in probability has been established in (2) and uniform integrability comes from the fact that (T_n) is bounded in L^2 since $\mathbb{E}[T_n^2]$ converges as $n \to \infty$ (we saw in the lecture that a sequence of random variables bounded in L^p for p > 1 is uniformly integrable).

For Solutions 2 and 3, we first show that $\mathbb{E}[T_n] \to \exp(1/\lambda)$. As in question (4), we have

$$\mathbb{E}\left[T_{n}\right] = \mathbb{E}\left[\prod_{i=1}^{n} X_{i}^{1/n}\right] = \prod_{i=1}^{n} \mathbb{E}\left[X_{i}^{1/n}\right] = \mathbb{E}\left[X^{1/n}\right]^{n},$$

and we similarly compute $\mathbb{E}\left[X^{1/n}\right]$:

$$\mathbb{E}\left[X^{1/n}\right] = \int_{1}^{\infty} x^{1/n} \cdot \frac{\lambda}{x^{\lambda+1}} \mathrm{d}x = \frac{\lambda n}{\lambda n - 1} = 1 + \frac{1}{\lambda n - 1}$$

Thus, similarly to (4):

$$\mathbb{E}\left[T_n\right] = \left(1 + \frac{1}{\lambda n - 1}\right)^n = \exp\left(n\ln\left(1 + \frac{1}{\lambda n - 1}\right)\right) = \exp\left(n\left(\frac{1}{\lambda n - 1} + o\left(\frac{1}{n}\right)\right)\right)$$
$$= \exp\left(\frac{1}{\lambda} + o(1)\right).$$

This entails

$$\mathbb{E}\left[T_n\right] \quad \xrightarrow[n \to \infty]{} \quad \exp(1/\lambda)$$

Solution 2. We show that $\mathbb{E}[(T_n - \exp(1/\lambda)^2] \to 0$. Indeed, then by the Cauchy-Schwarz inequality $\mathbb{E}[|T_n - \exp(1/\lambda)|] \leq \mathbb{E}[(T_n - \exp(1/\lambda))^2]^{1/2} \to 0$. To this end just write

$$\mathbb{E}\left[(T_n - \exp(1/\lambda)^2) \right] = \mathbb{E}\left[T_n^2 \right] - 2\exp(1/\lambda)\mathbb{E}\left[T_n \right] + \exp(2/\lambda) \quad \xrightarrow[n \to \infty]{} 0$$

since $\mathbb{E}[T_n^2] \to \exp(2/\lambda)$ and $\mathbb{E}[T_n] \to \exp(1/\lambda)$.

Solution 3. We have $T_n \ge 0$, $T_n \to \exp(1/\lambda)$ almost surely and $\mathbb{E}[T_n] \to \exp(1/\lambda)$. Then Scheffé's lemma (seen in the exercise sheet) implies that $T_n \to \exp(1/\lambda)$ in L^1 .

(6) We first compute the point-wise limit of the cdf of $\max(X_1, \ldots, X_n)$. First, for $a \leq 0$ we have $\mathbb{P}\left(\max(X_1, \ldots, X_n)/n^{1/\lambda} \leq a\right) = 0$. Next, for a > 0, by independence we have for n sufficiently large so that $an^{1/\lambda} \geq 1$:

$$\mathbb{P}\left(\max(X_1,\ldots,X_n)/n^{1/\lambda} \le a\right) = \mathbb{P}\left(X_1 \le a,\cdots,X_n \le an^{1/\lambda}\right)$$
$$= \mathbb{P}\left(X_1 \le an^{1/\lambda}\right)^n$$
$$= (1 - \mathbb{P}\left(X_1 > an^{1/\lambda}\right))^n$$
$$= \left(1 - \frac{1}{(an^{1/\lambda})^{\lambda}}\right)^n$$

because $\mathbb{P}\left(X_1 = an^{1/\lambda}\right) = 0$. Thus

$$\mathbb{P}\left(\max(X_1,\ldots,X_n)/n^{1/\lambda} \le a\right) = \left(1 - \frac{1}{a^{\lambda}n}\right)^n$$
$$= \exp\left(n\ln\left(1 - \frac{1}{a^{\lambda}n}\right)\right)$$
$$= \exp\left(n\left(-\frac{1}{a^{\lambda}n} + o\left(\frac{1}{n}\right)\right)\right)$$

so that

$$\mathbb{P}\left(\max(X_1,\ldots,X_n)/n^{1/\lambda} \le a\right) \quad \xrightarrow[n \to \infty]{} e^{-a^{-\lambda}}.$$

Now observe that $F(a) = e^{-a^{-\lambda}} \mathbb{1}_{a \ge 0}$ is the cdf of a certain random variable X. Indeed, F has limit 0 at $-\infty$, limit 1 at ∞ , is continuous and weakly increasing. We conclude that $\frac{\max(X_1,\ldots,X_n)}{n^{1/\lambda}}$ converges in distribution to X.

Question 4

[12 Points] Let $(U_i)_{i\geq 1}$ be a sequence of independent and identically distributed random variables, all following the uniform distribution on [0, 1]. Fix $x_0 \in (0, 1)$. We define by induction a sequence of random variables $(X_n)_{n\geq 0}$ as follows: $X_0 = x_0$, and for $n \geq 0$:

$$X_{n+1} = \mathbb{1}_{U_{n+1} > X_n} \frac{X_n}{2} + \mathbb{1}_{U_{n+1} \le X_n} \frac{X_n + 1}{2}.$$

In other words,

$$X_{n+1} = \begin{cases} \frac{X_n}{2} & \text{if } U_{n+1} > X_n \\ \frac{X_n+1}{2} & \text{if } U_{n+1} \le X_n. \end{cases}$$

Finally, define $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(U_1, \ldots, U_n)$ for $n \ge 1$.

In this exercise, you may use without proof the following fact (seen in one of the training exercises): Let X, Y be two real-valued random variables, and \mathcal{A} be a σ -field. Assume that Y is independent of \mathcal{A} and that X is \mathcal{A} -measurable. Then for any measurable function $g : \mathbb{R}^2 \to \mathbb{R}^+$, we have

 $\mathbb{E}[g(X,Y) \mid \mathcal{A}] = h(X)$ a.s., where $h(x) = \mathbb{E}[g(x,Y)]$.

- (1) [4 Points] Show that $(X_n)_{n\geq 0}$ is a $(\mathcal{F}_n)_{n\geq 0}$ -martingale.
- (2) [2 Points] Show that $(X_n)_{n\geq 0}$ converges almost surely and in L^1 .
- (3) [2 Points] Show that for every $n \ge 0$ we have $2|X_{n+1} X_n| \ge \min(X_n, 1 X_n)$.
- (4) [4 Points] Denote by X_{∞} the almost sure limit of $(X_n)_{n\geq 0}$. Show that X_{∞} follows a Bernoulli distribution and find its parameter, justifying your answer.

Solution:

(1) First of all, using the fact that $0 \le x/2 \le 1$ and $0 \le (x+1)/2 \le 1$ for every $0 \le x \le 1$, we readily check by induction that for every $n \ge 0$ we have $0 \le X_n \le 1$. As a consequence X_n is bounded and thus integrable.

Next, by induction, we check that X_n is \mathcal{F}_n measurable:

- since $X_0 = x_0$ is constant, it is indeed \mathcal{F}_0 measurable.
- assume that X_n is \mathcal{F}_n measurable. Then by definition of X_{n+1} , X_{n+1} is $\sigma(U_{n+1}, X_n)$ measurable as a measurable function of (U_{n+1}, X_n) . But both X_n and U_{n+1} are \mathcal{F}_{n+1} measurable, so $\sigma(U_{n+1}, X_n) \subset \mathcal{F}_{n+1}$, which shows that X_{n+1} is \mathcal{F}_{n+1} measurable.

Finally we check that for every $n \ge 0$ we have $\mathbb{E}[X_{n+1} | F_n] = X_n$. To this end, write by linearity of conditional expectation and using the fact that X_n is \mathcal{F}_n measurable:

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = \mathbb{E}\left[\mathbbm{1}_{U_{n+1} > X_n} \mid \mathcal{F}_n\right] \frac{X_n}{2} + \mathbb{E}\left[\mathbbm{1}_{U_{n+1} \le X_n} \mid \mathcal{F}_n\right] \frac{X_n + 1}{2}.$$

Using the fact given in the statement of the exercise twice, we get

$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = (1 - X_n) \cdot \frac{X_n}{2} + X_n \cdot \frac{X_n + 1}{2} = X_n,$$

which completes the proof.

- (2) We have seen that $(X_n)_{n\geq 0}$ takes its values in [0, 1], so that it is a bounded martingale. In converges therefore almost surely and in L^1 .
- (3) We have either $X_{n+1} = X_n/2$ or $X_{n+1} = (X_n + 1)/2$, so that $2|X_{n+1} X_n|$ is equal to either X_n or $1 X_n$. Thus $2|X_{n+1} X_n|$ is at least equal to the minimum of these two quantities.
- (4) By passing to the limit in (3), we get that almost surely $\min(X_{\infty}, 1 X_{\infty}) \leq 0$. Since $X_{\infty} \in [0, 1]$ we conclude that $\mathbb{P}(X_{\infty} \in \{0, 1\}) = 1$, so that X_{∞} follows a Bernoulli distribution. Its parameter is equal to its mean $\mathbb{E}[X_{\infty}]$, which by L^1 convergence is the limit of $\mathbb{E}[X_n]$. But since (X_n) is a martingale we have $\mathbb{E}[X_n] = \mathbb{E}[X_0] = x_0$ for every $n \geq 0$. We conclude that X_{∞} is a Bernoulli random variable with parameter x_0 .

Intentionally blank page