[10 Points] Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables such that for every $n \geq 1$ we have $\mathbb{P}(X_n = n^2 - 1) = \frac{1}{n^2}$ and $\mathbb{P}(X_n = -1) = 1 - \frac{1}{n^2}$. For $n \geq 1$ we define $S_n = X_1 + \cdots + X_n$.

- (1) [1 Point] Show that $\mathbb{E}[X_n] = 0$ for every $n \ge 1$.
- (2) [3 Points] State the Borel-Cantelli lemmas.
- (3) [5 Points] Show that almost surely

$$\frac{S_n}{n} \quad \xrightarrow[n \to \infty]{} \quad -1.$$

(4) [1 Point] Why is it not possible to apply the strong law of large numbers? Justify your answer.

[5 Points] Let (E, \mathcal{A}) and (F, \mathcal{B}) be two sets equipped with σ -fields. Recall that on $E \times F$, the product σ -field is defined by $\mathcal{A} \otimes \mathcal{B} = \sigma(\{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\})$. For $C \in \mathcal{A} \otimes \mathcal{B}$ and $x \in E$, we set

 $C_x = \{ y \in F : (x, y) \in C \}.$

(1) [3 Points] Fix $x \in E$. Show that $\mathcal{U} = \{C \in \mathcal{A} \otimes \mathcal{B} : C_x \in \mathcal{B}\}$ is a σ -field on $E \times F$.

(2) [2 Points] Show that for every $C \in \mathcal{A} \otimes \mathcal{B}$ and $x \in E$ we have $C_x \in \mathcal{B}$.

[20 Points] Let $\lambda > 0$ and let X be a real-valued random variable such that $\mathbb{P}(X \ge a) = a^{-\lambda}$ for all $a \ge 1$. Let $(X_n)_{n\ge 1}$ be a sequence of independent random variables all having the same law as X. We define for every $n \ge 1$

$$T_n = \left(\prod_{i=1}^n X_i\right)^{1/n}$$

Remark: In the following, Part 1 and Part 2 can be treated independently: question (6) can be solved without using the other questions.

Part 1.

- (1) [2 Points] Show that X has a density and give its expression.
- (2) [4 Points] As $n \to \infty$, does T_n converge almost surely? Justify your answer.
- (3) [1 Point] As $n \to \infty$, does T_n converge in probability? Justify your answer.
- (4) [4 Points] Does $\mathbb{E}[T_n^2]$ converge as $n \to \infty$? Justify your answer.
- (5) [3 Points] As $n \to \infty$, does T_n converge in L^1 ? Justify your answer.

Part 2.

(6) [6 Points] Show that $\frac{\max(X_1,\ldots,X_n)}{n^{1/\lambda}}$ converges in distribution as $n \to \infty$.

[12 Points] Let $(U_i)_{i\geq 1}$ be a sequence of independent and identically distributed random variables, all following the uniform distribution on [0, 1]. Fix $x_0 \in (0, 1)$. We define by induction a sequence of random variables $(X_n)_{n\geq 0}$ as follows: $X_0 = x_0$, and for $n \geq 0$:

$$X_{n+1} = \mathbb{1}_{U_{n+1} > X_n} \frac{X_n}{2} + \mathbb{1}_{U_{n+1} \le X_n} \frac{X_n + 1}{2}.$$

In other words,

$$X_{n+1} = \begin{cases} \frac{X_n}{2} & \text{if } U_{n+1} > X_n \\ \frac{X_n+1}{2} & \text{if } U_{n+1} \le X_n. \end{cases}$$

Finally, define $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(U_1, \ldots, U_n)$ for $n \ge 1$.

In this exercise, you may use without proof the following fact (seen in one of the training exercises): Let X, Y be two real-valued random variables, and \mathcal{A} be a σ -field. Assume that Y is independent of \mathcal{A} and that X is \mathcal{A} -measurable. Then for any measurable function $g : \mathbb{R}^2 \to \mathbb{R}^+$, we have

 $\mathbb{E}[g(X,Y) \mid \mathcal{A}] = h(X)$ a.s., where $h(x) = \mathbb{E}[g(x,Y)]$.

- (1) [4 Points] Show that $(X_n)_{n\geq 0}$ is a $(\mathcal{F}_n)_{n\geq 0}$ -martingale.
- (2) [2 Points] Show that $(X_n)_{n>0}$ converges almost surely and in L^1 .
- (3) [2 Points] Show that for every $n \ge 0$ we have $2|X_{n+1} X_n| \ge \min(X_n, 1 X_n)$.
- (4) [4 Points] Denote by X_{∞} the almost sure limit of $(X_n)_{n\geq 0}$. Show that X_{∞} follows a Bernoulli distribution and find its parameter, justifying your answer.

Intentionally blank page