Question 1

[10 Points] Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables such that for every $n \geq 1$ we have $\mathbb{P}\left(X_{n}=n^{2}-1\right)=\frac{1}{n^{2}}$ and $\mathbb{P}\left(X_{n}=-1\right)=1-\frac{1}{n^{2}}$. For $n \geq 1$ we define $S_{n}=X_{1}+\cdots+X_{n}$.
(1) $[1$ Point $]$ Show that $\mathbb{E}\left[X_{n}\right]=0$ for every $n \geq 1$.
(2) [3 Points] State the Borel-Cantelli lemmas.
(3) [5 Points] Show that almost surely

$$
\frac{S_{n}}{n} \underset{n \rightarrow \infty}{\longrightarrow}-1
$$

(4) [1 Point] Why is it not possible to apply the strong law of large numbers? Justify your answer.

Question 2

[5 Points] Let (E, \mathcal{A}) and (F, \mathcal{B}) be two sets equipped with σ-fields. Recall that on $E \times F$, the product σ-field is defined by $\mathcal{A} \otimes \mathcal{B}=\sigma(\{A \times B: A \in \mathcal{A}, B \in \mathcal{B}\})$. For $C \in \mathcal{A} \otimes \mathcal{B}$ and $x \in E$, we set

$$
C_{x}=\{y \in F:(x, y) \in C\} .
$$

(1) [3 Points] Fix $x \in E$. Show that $\mathcal{U}=\left\{C \in \mathcal{A} \otimes \mathcal{B}: C_{x} \in \mathcal{B}\right\}$ is a σ-field on $E \times F$.
(2) [2 Points] Show that for every $C \in \mathcal{A} \otimes \mathcal{B}$ and $x \in E$ we have $C_{x} \in \mathcal{B}$.

Question 3

[20 Points] Let $\lambda>0$ and let X be a real-valued random variable such that $\mathbb{P}(X \geq a)=a^{-\lambda}$ for all $a \geq 1$. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables all having the same law as X. We define for every $n \geq 1$

$$
T_{n}=\left(\prod_{i=1}^{n} X_{i}\right)^{1 / n}
$$

Remark: In the following, Part 1 and Part 2 can be treated independently: question (6) can be solved without using the other questions.

Part 1.

(1) [2 Points] Show that X has a density and give its expression.
(2) [4 Points] As $n \rightarrow \infty$, does T_{n} converge almost surely? Justify your answer.
(3) [1 Point] As $n \rightarrow \infty$, does T_{n} converge in probability? Justify your answer.
(4) [4 Points] Does $\mathbb{E}\left[T_{n}^{2}\right]$ converge as $n \rightarrow \infty$? Justify your answer.
(5) [3 Points] As $n \rightarrow \infty$, does T_{n} converge in L^{1} ? Justify your answer.

Part 2.
(6) [6 Points] Show that $\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{n^{1 / \lambda}}$ converges in distribution as $n \rightarrow \infty$.

Question 4

[12 Points] Let $\left(U_{i}\right)_{i \geq 1}$ be a sequence of independent and identically distributed random variables, all following the uniform distribution on $[0,1]$. Fix $x_{0} \in(0,1)$. We define by induction a sequence of random variables $\left(X_{n}\right)_{n \geq 0}$ as follows: $X_{0}=x_{0}$, and for $n \geq 0$:

$$
X_{n+1}=\mathbb{1}_{U_{n+1}>X_{n}} \frac{X_{n}}{2}+\mathbb{1}_{U_{n+1} \leq X_{n}} \frac{X_{n}+1}{2}
$$

In other words,

$$
X_{n+1}=\left\{\begin{array}{lll}
\frac{X_{n}}{2} & \text { if } & U_{n+1}>X_{n} \\
\frac{X_{n}+1}{2} & \text { if } & U_{n+1} \leq X_{n}
\end{array}\right.
$$

Finally, define $\mathcal{F}_{0}=\{\varnothing, \Omega\}$ and $\mathcal{F}_{n}=\sigma\left(U_{1}, \ldots, U_{n}\right)$ for $n \geq 1$.
In this exercise, you may use without proof the following fact (seen in one of the training exercises): Let X, Y be two real-valued random variables, and \mathcal{A} be a σ-field. Assume that Y is independent of \mathcal{A} and that X is \mathcal{A}-measurable. Then for any measurable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{+}$, we have

$$
\mathbb{E}[g(X, Y) \mid \mathcal{A}]=h(X) \quad \text { a.s., } \quad \text { where } \quad h(x)=\mathbb{E}[g(x, Y)] .
$$

(1) [4 Points] Show that $\left(X_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-martingale.
(2) [2 Points] Show that $\left(X_{n}\right)_{n \geq 0}$ converges almost surely and in L^{1}.
(3) [2 Points] Show that for every $n \geq 0$ we have $2\left|X_{n+1}-X_{n}\right| \geq \min \left(X_{n}, 1-X_{n}\right)$.
(4) [4 Points] Denote by X_{∞} the almost sure limit of $\left(X_{n}\right)_{n \geq 0}$. Show that X_{∞} follows a Bernoulli distribution and find its parameter, justifying your answer.

Intentionally blank page

