Sample PT 2023 ETHZ exam [Total number of points: 50]

At any point you can use results proved in the lecture without proof, unless explicitely asked for a proof. If you use a result from the lecture, please reference it appropriately.

Please pay attention to the quality, the precision and the presentation of your mathematical writing. Intermediate steps may be marked.

Exercise 1. [17 points] Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables following the exponential distribution of parameter 1 .
(1) [10 points] Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of events. Give the definition of the event limsup A_{n}. State and prove the Borel-Cantelli Lemmas.
(2) [2 points] Fix $c>1$. Show that

$$
\mathbb{P}\left(X_{n}>c \ln (n) \text { for infinitely many } n\right)=0 .
$$

(3) [2 points] Fix $c \in(0,1]$ Show that

$$
\mathbb{P}\left(X_{n}>c \ln (n) \text { for infinitely many } n\right)=1 .
$$

(4) [3 points] Fix $c>0$. Compute, with justification, the quantity

$$
\mathbb{P}\left(X_{n} \leq c \ln (n) \text { for infinitely many } n\right)
$$

Solution:

(1) Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of events. We write

$$
\limsup A_{n}=\bigcap_{n \geq o k \geq n} A_{k} .
$$

[1 points] giving the definition of $\lim \sup A_{n}$
Borel-Cantelli 1. If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left(\lim \sup A_{n}\right)=0$. [1 point] correct statement

Proof. For $n \geq 1, \limsup A_{n} \subset \bigcup_{k \geq n} A_{k}$, so by monotonicity

$$
\mathbb{P}\left(\limsup A_{n}\right) \leq \mathbb{P}\left(\bigcup_{k=n} A_{k}\right) \leq \sum_{k=n}^{\infty} \mathbb{P}\left(A_{k}\right) \underset{n \rightarrow \infty}{\longrightarrow} \circ
$$

[1 point] justification of the first inequality

as the remainder of a convergent series.
[1 point] justification of why $\sum_{k=n}^{\infty} \mathbb{P}\left(A_{k}\right) \rightarrow 0$
Borel-Cantelli 2. If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$ and if $\left(A_{n}\right)_{n \geq 1}$ are independent, then $\mathbb{P}\left(\lim \sup A_{n}\right)=1$. [1 point] correct statement

Proof. Fix $n \geq \ell \geq 1$ and write

$$
\mathbb{P}\left(\bigcap_{k=\ell}^{n} A_{k}^{c}\right)=\prod_{k=\ell}^{n} \mathbb{P}\left(A_{k}^{c}\right)=\prod_{k=\ell}^{n}\left(1-\mathbb{P}\left(A_{k}\right)\right)
$$

[1 point] for these equalities with justification

where we have used independence for the first equality. Using the inequality $\ln (1-x) \leq-x$ valid for $\mathrm{o} \leq x \leq 1$, we get

$$
\prod_{k=\ell}^{n}\left(1-\mathbb{P}\left(A_{k}\right)\right)=\exp \left(\sum_{k=\ell}^{n} \ln \left(1-\mathbb{P}\left(A_{k}\right)\right)\right) \leq \exp \left(-\sum_{k=l}^{n} \mathbb{P}\left(A_{k}\right)\right) .
$$

[1 point] the last inequality with justification

But $\sum_{k=l}^{n} \mathbb{P}\left(A_{k}\right) \rightarrow \infty$ as $n \rightarrow \infty$, so

$$
\prod_{k=\ell}^{n}\left(1-\mathbb{P}\left(A_{k}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} \text { o. }
$$

[1 point] this convergence $\rightarrow o$ with justification
But

$$
\mathbb{P}\left(\bigcap_{k=\ell}^{n} A_{k}^{c}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(\bigcap_{k=\ell}^{\infty} A_{k}^{c}\right)
$$

as a decreasing sequence of events. Thus

$$
\mathbb{P}\left(\bigcap_{k=\ell}^{\infty} A_{k}^{c}\right)=\mathrm{o} .
$$

Thus

$$
\mathbb{P}\left(\bigcup_{\ell=1}^{\infty} \bigcap_{k=\ell}^{\infty} A_{k}^{c}\right)=\mathrm{o}
$$

[1 point] this probability $=0$ with justification
and by complementation we get

$$
\mathbb{P}\left(\limsup A_{n}\right)=\mathbb{P}\left(\bigcap_{\ell=1}^{\infty} \bigcup_{k=\ell}^{\infty} A_{k}\right)=1-\mathbb{P}\left(\bigcup_{\ell=1}^{\infty} \bigcap_{k=\ell}^{\infty} A_{k}^{c}\right)=1
$$

[1 point] conclusion by complementation
(2) We have $\mathbb{P}\left(X_{n} \geq a\right)=e^{-a}$ for every $a \geq 0$
[1 point] for this expression
, so

$$
\mathbb{P}\left(X_{n}>c \ln (n)\right)=e^{-c \ln (n)}=\frac{1}{n^{c}} .
$$

Thus, for $c>1$, we have $\sum_{n=1}^{\infty} \frac{1}{n^{c}}<\infty$.
[1 point] for the convergence of this sum
The conclusion follows from the first Borel-Cantelli Lemma, since limsup A_{n} is the event " A_{n} occurs for infinitely many $n^{\prime \prime}$.
(3) For $c \in(0,1]$, we have $\sum_{n=1}^{\infty} \frac{1}{n^{c}}=\infty$.
[1 point] for the divergence of this sum
Since the events $\left\{X_{n}>c \ln (n)\right\}$ are independent, the conclusion follows from the second BorelCantelli Lemma.

1 point] for stating the independence hypothesis
(4) We have $\mathbb{P}\left(X_{n} \leq c \ln (n)\right)=1-1 / n^{c} \rightarrow 1$. So $\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n} \leq c \ln (n)\right)=\infty$.
[1 point] for the divergence of this sum
Since the events $\left\{X_{n}>c \ln (n)\right\}$ are independent, by the second Borel-Cantelli Lemma we get

$$
\mathbb{P}\left(X_{n} \leq c \ln (n) \text { for infinitely many } n\right)=1
$$

[1 point] for the independence hypothesis
[1 point] for using the Borel-Cantelli Lemma

Exercise 2. [14 points] Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables which follow the uniform distribution on $[0,1]$. Set $Y_{n}=\left(X_{n}\right)^{n}$.
(1) [4 points] State and prove the transfer theorem.
(2) $[1$ point $]$ Compute (with justification) $\mathbb{E}\left[X_{1}\right]$.
(3) [2 points] Let $F: \mathbb{R} \rightarrow \mathbb{R}_{+}$be measurable. Using the transfer theorem, write $\mathbb{E}\left[F\left(Y_{n}\right)\right]$ as an integral on $[0,1]$ with respect to the Lebesgue measure. Please write explicitly with what function and what random variable you apply the transfer theorem with.
(4) [2 points] Using the dummy function method, deduce that Y_{n} is a random variable with a density, and give an expression of this density.
(5) 1 point $]$ Show that Y_{n} converges in probability to o as $n \rightarrow \infty$.
(6) $[1$ point $]$ Show that Y_{n} converges in L^{1} as $n \rightarrow \infty$.
(7) [3 points] Does Y_{n} converge almost surely as $n \rightarrow \infty$? Justify your answer.

Solution:

(1) Transfer theorem. Let $X: \Omega \rightarrow E$ be a random variable and $f: E \rightarrow \mathbb{R}_{+}$a measurable function. Then $\mathbb{E}[f(X)]=\int_{E} f(x) \mathbb{P}_{X}(\mathrm{~d} x)$ where \mathbb{P}_{X} is the law of X.
[1 points] correct statement
Proof. Step 1. Take $f=\mathbb{1}_{A}$ with $A \in \mathcal{E}$. Then $\mathbb{E}\left[\mathbb{1}_{A}(X)\right]=\mathbb{E}\left[\mathbb{1}_{X \in A}\right]=\mathbb{P}(X \in A)$ and $\int_{E} \mathbb{1}_{A}(x) \mathbb{P}_{X}(\mathrm{~d} x)=$ $\mathbb{P}_{X}(A)=\mathbb{P}(X \in A)$.
[1 point] checking for indicators

Step 2. By linearity, the result is true for any nonnegative simple function.

[1 point] getting the result for nonnegative simple functions

We then take a sequence (f_{n}) of simple functions such that $\mathrm{o} \leq f_{n} \leq f$ and $f_{n} \uparrow f$. By step 1:

$$
\mathbb{E}\left[f_{n}(X)\right]=\int_{E} f_{n}(x) \mathbb{P}_{X}(\mathrm{~d} x)
$$

and by monotone convergence (twice)

$$
\left.\mathbb{E}\left[f_{n}(X)\right]=\int_{\Omega} f_{n}(X(\omega)) \mathbb{P}(\mathrm{d} \omega) \quad \underset{n \rightarrow \infty}{\longrightarrow} \int_{\Omega} f(X(\omega)) \mathbb{P}(\mathrm{d} \omega)=\mathbb{E}[f(X))\right]
$$

and

$$
\int_{E} f_{n}(x) \mathbb{P}_{X}(\mathrm{~d} x) \underset{n \rightarrow \infty}{\longrightarrow} \int_{E} f(x) \mathbb{P}_{X}(\mathrm{~d} x) .
$$

[1 point] Conclusion by monotone convergence

(2) Using the transfer theorem with the function $f(x)=x$ for $x \in[0,1]$, we have

$$
\mathbb{E}\left[X_{1}\right]=\int_{0}^{1} x \mathrm{~d} x=\frac{1}{2} .
$$

[1 point] obtaining the result with justification using the transfer theorem

(3) We apply the transfer theorem with the random variable X_{n} and the function $f(x)=F\left(x^{n}\right)$ to get

$$
\mathbb{E}\left[F\left(Y_{n}\right)\right]=\mathbb{E}\left[F\left(X_{n}^{n}\right)\right]=\int_{0}^{1} F\left(x^{n}\right) \mathrm{d} x .
$$

[1 point] obtaining the result with justification using the transfer theorem

(4) We perfom the change of variables $y=x^{n}$, which gives $x=y^{1 / n}$, so $\mathrm{d} x=\frac{1}{n} y^{1 / n-1} \mathrm{~d} y$:

$$
\mathbb{E}\left[F\left(Y_{n}\right)\right]=\int_{0}^{1} F\left(x^{n}\right) \mathrm{d} x=\int_{0}^{1} F(y) \frac{1}{n} y^{1 / n-1} \mathrm{~d} y .
$$

We conclude that Y_{n} has density $\frac{1}{n} y^{1 / n-1}$ on [0,1].
[1 point] attempting a change of variables

```
[1 point] correct result
```

(5) For $\varepsilon \in(0,1), \mathbb{P}\left(\left|Y_{n}\right| \geq \varepsilon\right)=1-\varepsilon^{1 / n} \rightarrow o$ when $n \rightarrow \infty$, which gives the result.
[1 point]
(6) using the transfer theorem, since $\left|Y_{n}\right|=Y_{n}$ we get

$$
\mathbb{E}\left[Y_{n}\right]=\int_{0}^{1} x \frac{x^{1 / n-1}}{n} \mathrm{~d} x=\frac{1}{n} \int_{0}^{1} x^{1 / n} \mathrm{~d} x=\frac{1}{n} \frac{1}{1+1 / n} \underset{n \rightarrow \infty}{\longrightarrow} \quad .
$$

Thus Y_{n} converges in L^{1} to o.
[1 point] for the correct computation
(7) Fix any $\varepsilon \in]$ o, 1 . Using the Taylor expansion $\exp (x)=1+x+o(x)$, which implies that $1-\exp (x) \sim-x$ as $x \rightarrow 0$, we have

$$
\mathbb{P}\left(Y_{n} \geq \varepsilon\right)=1-\varepsilon^{1 / n}=1-\exp \left(\frac{1}{n} \ln (\varepsilon)\right) \underset{n \rightarrow \infty}{\sim}-\frac{1}{n} \ln (\varepsilon),
$$

so that

$$
\sum_{n \geq 1} \mathbb{P}\left(Y_{n} \geq \varepsilon\right)=\infty
$$

Since the events $\left\{Y_{n} \geq \varepsilon\right\}$ are independent, by the second Borel-Cantelli lemma almost sureley $Y_{n} \geq \varepsilon$ infinitely often.
[1 points] for application of Borel-Cantelli 2 with $\left\{Y_{n} \geq \varepsilon\right\}$

Similarly, $\mathbb{P}\left(Y_{n}<\varepsilon\right)=\exp \left(\frac{1}{n} \ln (\varepsilon)\right) \rightarrow 1$, so

$$
\sum_{n \geq 1} \mathbb{P}\left(Y_{n} \leq \varepsilon\right)=\infty
$$

Since the events $\left\{Y_{n} \leq \varepsilon\right\}$ are independent, by the second Borel-Cantelli lemma almost surely $Y_{n} \leq \varepsilon$ infinitely often.
[1 point] for application of Borel-Cantelli 2 with $\left\{Y_{n}<\varepsilon\right\}$

Thus, almost surely $Y_{n} \geq \varepsilon$ infinitely often and $Y_{n} \leq \varepsilon$ infinitely often. This shows that a.s. $\left(Y_{n}\right)$ diverges.
[1 point] for the conclusion

Exercise 3. [9 points] Let Ω be a set and let \mathcal{A} be a σ-field on Ω. Let H be a set of functions from Ω to \mathbb{R} which satisfies the following two properties:

- H contains all constant functions and is stable under increasing limits (that is if $f: E \rightarrow \mathbb{R}$ is a funtion with $f=\lim f_{n}$ with $\left(f_{n}\right)_{n \geq 1}$ is a sequence of elements of H such that $f_{n}(\omega) \leq f_{n+1}(\omega)$ for every $\omega \in \Omega$ and $n \geq 0$, then $f \in H$).
- H is a vector space (that is, if $a, b \in \mathbb{R}$ and $f, g \in H$ then $a f+b g \in H$).
(1) [2 points] State the Dynkin Lemma.
(2) [3 points] Show that $\mathcal{B}=\left\{A \in \mathcal{A}: \mathbb{1}_{A} \in H\right\}$ is a Dynkin system.
(3) [4 points] Let $\mathcal{C} \subset \mathcal{A}$ be a generating π-system of \mathcal{A}. Assume that $\mathbb{1}_{A} \in H$ for every $A \in \mathcal{C}$. Show that H contains all \mathcal{A}-measurable real-valued functions.

Hint. First use the Dynkin Lemma to show that H contains all functions of the form $\mathbb{1}_{A}$ with $A \in \mathcal{A}$.

Solution:

(1) Dynkin Lemma. Let Ω be a set and let $\mathcal{C} \subset \mathcal{P}(\Omega)$ be a collection of subsets of Ω. Assume that \mathcal{C} is stable by finite intersections. Then the Dynkin system generated by \mathcal{C} is equal to the σ-field generated by \mathcal{C}.
[2 points] for the correct statement.
(2) We check the three properties defining a Dynkin system:
(a) $\Omega \in \mathcal{B}$ because the constant function equal to 1 is in H.
(b) If $A \in \mathcal{B}$, then $\mathbb{1}_{A^{c}}=1-\mathbb{1}_{A}$ because 1 and $\mathbb{1}_{A}$ are in H and H is a vector space.
(c) If $\left(A_{n}\right)_{n \geq 1}$ is a pairwise disjoint sequence of elements of \mathcal{B}, set $A=\cup_{n \geq 1} A_{n}$ and then observe that

$$
\mathbb{1}_{A}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mathbb{1}_{A_{k}},
$$

where the limit is increasing. In addition $\mathbb{1}_{A_{k}} \in H$ since H is a vector space. Since H is stable under increasing limits, we conclude that $\mathbb{1}_{A}$ is in H

[4 points] 1 point for (a), 1 point for (b), 2 points for (c)

(3) Step 1. By question (2), \mathcal{B} is a Dynkin system containing \mathcal{C}. Therefor \mathcal{B} contains the Dynkin system generated by \mathcal{C}. Since \mathcal{C} is a π-system, by the Dynkin Lemma the Dynkin system generated by \mathcal{C} is $\sigma(\mathcal{C})$, which is \mathcal{A}. We conclude that $\mathcal{B}=\mathcal{A}$, so that H contains all functions of the form $\mathbb{1}_{A}$
with $A \in \mathcal{A}$.
[1 point] for step 1

Step 2. Since H is a vector space, by linearity H contains all simple \mathcal{A}-measurable functions. [1 point] for step 2

Step 3. H contains all nonnegative \mathcal{A}-measurable functions, since every nonnegative \mathcal{A}-measurable function is an increasing limit of \mathcal{A}-measurable simple functions and H is stable under increasing limits.
[1 point] for step 3

Step 4. H contains all \mathcal{A}-measurable functions, since every \mathcal{A}-measurable function can be written as a difference of two nonngative \mathcal{A}-measurable functions and H is a vector space.
[1 point] for step 4

Exercise 4. 10 points Fix an integer $n \geq 2$ and let $\left(U_{k}\right)_{1 \leq k \leq n}$ be independent random variables, all following the uniform distribution on $[0,1]$. Define

$$
M_{n}=\max \left(\frac{1}{\sqrt{U_{1}}}, \ldots, \frac{1}{\sqrt{U_{n}}}\right) .
$$

(1) [3 points] Compute the cumulative distribution function of M_{n}.
(2) $\left[2\right.$ points] Show that $x^{2} \mathbb{P}\left(M_{n} \geq x\right) \rightarrow n$ as $x \rightarrow \infty$.
(3) [2 points] Let X be a nonnegative real-valued random variable. Show that $\mathbb{E}[X]=\int_{0}^{\infty} \mathbb{P}(X \geq u) \mathrm{d} u$. Note. This question is independent of questions (1) and (2).
(4) [3 points] For what values of $p>0$ do we have $\mathbb{E}\left[M_{n}^{p}\right]<\infty$?

Note. You may use the results of the previous questions even if you didn't manage to solve them.

Solution:

(1) For $u \in[0,1]$, we have $\frac{1}{\sqrt{u}} \geq 1$. As a consequence for $x<1$ we have $\mathbb{P}\left(M_{n} \leq x\right)=0$.
[1 point for the case $x<1$]
For $x \geq 1$ we have:

$$
\mathbb{P}\left(M_{n} \leq x\right)=\mathbb{P}\left(\frac{1}{\sqrt{U_{1}}} \leq x, \cdots, \frac{1}{\sqrt{U_{n}}} \leq x\right)=\mathbb{P}\left(U_{1} \geq \frac{1}{x^{2}}\right) \cdots \mathbb{P}\left(U_{n} \geq \frac{1}{x^{2}}\right)=\mathbb{P}\left(U_{1} \geq \frac{1}{x^{2}}\right)^{n}=\left(1-\frac{1}{x^{2}}\right)^{n} .
$$

The second equality follows from independence and the third one from the fact that $\left(U_{i}\right)_{1 \leq i \leq n}$ have same law.
[1 point] for the second equality
[1 point] for the the final result
(2) By (1), for $x \geq 1$ we have

$$
\mathbb{P}\left(M_{n} \geq x\right)=1-\mathbb{P}\left(M_{n}<x\right)=1-\left(1-\frac{1}{x^{2}}\right)^{n} .
$$

By the Binomial formula,

$$
\left(1-\frac{1}{x^{2}}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k}}{x^{2 k},}
$$

so

$$
x^{2} \mathbb{P}\left(M_{n} \geq x\right)=x^{2}\left(1-\left(1-\frac{1}{x^{2}}\right)^{n}\right)=\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k+1}}{x^{2 k-2}}=n+\sum_{k=2}^{n}\binom{n}{k} \frac{(-1)^{k+1}}{x^{2 k-2}} \underset{x \rightarrow \infty}{\longrightarrow} n
$$

[2 points] for justification and conclusion

(3) By Fubini-Tonelli's theorem for nonnegative functions:

$$
\mathbb{E}[X]=\mathbb{E}\left[\int_{0}^{\infty} 1_{u \leq X} \mathrm{~d} u\right]=\int_{0}^{\infty} \mathbb{E}\left[1_{u \leq X}\right] \mathrm{d} u=\int_{1}^{\infty} \mathbb{P}(X \geq u) \mathrm{d} u .
$$

[1 point] for making \mathbb{E} and \int appear at the same time
1 point] for citing Fubini theorem for nonnegative functions
(4) Here $M_{n} \geq 0$.
[1 point] for checking $M_{n} \geq 0$
We have by question (3)

$$
\mathbb{E}\left[M_{n}^{p}\right]=\int_{0}^{\infty} \mathbb{P}\left(M_{n}^{p} \geq u\right) \mathrm{d} u=\int_{0}^{\infty} \mathbb{P}\left(M_{n} \geq u^{1 / p}\right) \mathrm{d} u=1+\int_{1}^{\infty} \mathbb{P}\left(M_{n} \geq u^{1 / p}\right) \mathrm{d} u .
$$

[1 point for this expression]

But for $u \geq 1$:

$$
\mathbb{P}\left(M_{n} \geq u^{1 / p}\right)=\frac{1}{u^{2 / p}}\left(u^{2 / p} \mathbb{P}\left(M_{n} \geq u^{1 / p}\right)\right) \underset{u \rightarrow \infty}{\sim} \frac{n}{u^{2 / p}} .
$$

by question (2). But $1 / u^{2 / p}$ is integrable at infinity if and only if $2 / p>1$ (Riemann integral). Thus $\mathbb{E}\left[M_{n}^{p}\right]<\infty$ if and only if $p<2$.
[1 points] conclusion.

