
Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Sample PT 2023 ETHZ exam [Total number of points: 50]

At any point you can use results proved in the lecture without proof, unless explicitely asked for a
proof. If you use a result from the lecture, please reference it appropriately.

Please pay attention to the quality, the precision and the presentation of your mathematical writing.
Intermediate steps may be marked.
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Exercise 1. [17 points] Let (Xn)n≥1 be a sequence of i.i.d. random variables following the exponential
distribution of parameter 1.

(1) [10 points] Let (An)n≥1 be a sequence of events. Give the definition of the event limsupAn. State
and prove the Borel-Cantelli Lemmas.

(2) [2 points] Fix c > 1. Show that

P (Xn > c ln(n) for infinitely many n) = 0.

(3) [2 points] Fix c ∈ (0,1] Show that

P (Xn > c ln(n) for infinitely many n) = 1.

(4) [3 points] Fix c > 0. Compute, with justification, the quantity

P (Xn ≤ c ln(n) for infinitely many n) .

Solution:

(1) Let (An)n≥1 be a sequence of events. We write

limsupAn =
⋂
n≥0

⋃
k≥n

Ak .

[1 points] giving the definition of limsupAn

Borel-Cantelli 1. If
∑∞

n=1P (An) <∞, then P (limsupAn) = 0.
[1 point] correctstatement

Proof. For n ≥ 1, limsupAn ⊂
⋃

k≥nAk, so by monotonicity

P (limsupAn) ≤ P

⋃
k=n

Ak

 ≤ ∞∑
k=n

P (Ak) −→
n→∞

0

[1 point] justification of the first inequality
as the remainder of a convergent series.
[1 point] justification of why

∑∞
k=nP (Ak)→ 0

Borel-Cantelli 2. If
∑∞

n=1P (An) =∞ and if (An)n≥1 are independent, then P (limsupAn) = 1.
[1 point] correctstatement
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Proof. Fix n ≥ ℓ ≥ 1 and write

P

 n⋂
k=ℓ

Ac
k

 =
n∏

k=ℓ

P

(
Ac
k

)
=

n∏
k=ℓ

(1−P (Ak))

[1 point] for these equalities with justification
where we have used independence for the first equality. Using the inequality ln(1−x) ≤ −x valid
for 0 ≤ x ≤ 1, we get

n∏
k=ℓ

(1−P (Ak)) = exp

 n∑
k=ℓ

ln(1−P (Ak))

 ≤ exp

− n∑
k=l

P (Ak)

 .
[1 point] the last inequality with justification

But
∑n

k=lP (Ak)→∞ as n→∞, so

n∏
k=ℓ

(1−P (Ak)) −→
n→∞

0.

[1 point] this convergence→ 0 with justification
But

P

 n⋂
k=ℓ

Ac
k

 −→
n→∞

P

 ∞⋂
k=ℓ

Ac
k


as a decreasing sequence of events. Thus

P

 ∞⋂
k=ℓ

Ac
k

 = 0.

Thus

P

 ∞⋃
ℓ=1

∞⋂
k=ℓ

Ac
k

 = 0

[1 point] this probability = 0 with justification
and by complementation we get

P (limsupAn) = P

 ∞⋂
ℓ=1

∞⋃
k=ℓ

Ak

 = 1−P

 ∞⋃
ℓ=1

∞⋂
k=ℓ

Ac
k

 = 1.

[1 point] conclusion by complementation
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(2) We have P (Xn ≥ a) = e−a for every a ≥ 0
[1 point] for this expression

, so
P (Xn > c ln(n)) = e−c ln(n) =

1
nc

.

Thus, for c > 1, we have
∑∞

n=1
1
nc <∞.

[1 point] for the convergence of this sum
The conclusion follows from the first Borel-Cantelli Lemma, since limsupAn is the event “An

occurs for infinitely many n”.

(3) For c ∈ (0,1], we have
∑∞

n=1
1
nc =∞.

[1 point] for the divergence of this sum
Since the events {Xn > c ln(n)} are independent, the conclusion follows from the second Borel-
Cantelli Lemma.
[1 point] for stating the independence hypothesis

(4) We have P (Xn ≤ c ln(n)) = 1− 1/nc→ 1. So
∑∞

n=1P (Xn ≤ c ln(n)) =∞.
[1 point] for the divergence of this sum

Since the events {Xn > c ln(n)} are independent, by the second Borel-Cantelli Lemma we get

P (Xn ≤ c ln(n) for infinitely many n) = 1.

[1 point] for the independence hypothesis

[1 point] for using the Borel-Cantelli Lemma

□
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Exercise 2. [14 points] Let (Xn)n≥1 be a sequence of independent random variables which follow the
uniform distribution on [0,1]. Set Yn = (Xn)n.

(1) [4 points] State and prove the transfer theorem.

(2) [1 point] Compute (with justification) E [X1].

(3) [2 points] Let F : R→R+ be measurable. Using the transfer theorem, write E [F(Yn)] as an integral
on [0,1] with respect to the Lebesgue measure. Please write explicitly with what function and what
random variable you apply the transfer theorem with.

(4) [2 points] Using the dummy function method, deduce that Yn is a random variable with a density,
and give an expression of this density.

(5) [1 point] Show that Yn converges in probability to 0 as n→∞.

(6) [1 point] Show that Yn converges in L1 as n→∞.

(7) [3 points] Does Yn converge almost surely as n→∞? Justify your answer.

Solution:

(1) Transfer theorem. Let X : Ω→ E be a random variable and f : E → R+ a measurable function.
Then E [f (X)] =

∫
E
f (x)PX(dx) where PX is the law of X.

[1 points] correctstatement
Proof. Step 1. Take f = 1A with A ∈ E. Then E [1A(X)] = E [1X∈A] = P (X ∈ A) and

∫
E
1A(x)PX(dx) =

PX(A) = P (X ∈ A).
[1 point] checking for indicators

Step 2. By linearity, the result is true for any nonnegative simple function.
[1 point] getting the result for nonnegative simple functions

We then take a sequence (fn) of simple functions such that 0 ≤ fn ≤ f and fn ↑ f . By step 1:

E [fn(X)] =
∫
E
fn(x)PX(dx)

and by monotone convergence (twice)

E [fn(X)] =
∫
Ω

fn(X(ω))P(dω) −→
n→∞

∫
Ω

f (X(ω))P(dω) = E [f (X))]

and ∫
E
fn(x)PX(dx) −→

n→∞

∫
E
f (x)PX(dx).
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[1 point] Conclusion by monotone convergence

(2) Using the transfer theorem with the function f (x) = x for x ∈ [0,1], we have

E [X1] =
∫ 1
0
xdx =

1
2
.

[1 point] obtaining the result with justification using the transfer theorem

(3) We apply the transfer theorem with the random variable Xn and the function f (x) = F(xn) to get

E [F(Yn)] = E [F(Xn
n )] =

∫ 1
0
F(xn)dx.

[1 point] obtaining the result with justification using the transfer theorem

(4) We perfom the change of variables y = xn, which gives x = y1/n, so dx = 1ny
1/n−1dy:

E [F(Yn)] =
∫ 1
0
F(xn)dx =

∫ 1
0
F(y)
1
n
y1/n−1dy.

We conclude that Yn has density 1ny
1/n−1 on [0,1].

[1 point] attempting a change of variables

[1 point] correct result

(5) For ε ∈ (0,1), P (|Yn| ≥ ε) = 1− ε1/n→ 0 when n→∞, which gives the result.
[1 point]

(6) using the transfer theorem, since |Yn| = Yn we get

E [Yn] =
∫ 1
0
x
x1/n−1

n
dx =

1
n

∫ 1
0
x1/ndx =

1
n
1

1+ 1/n
−→
n→∞

0.

Thus Yn converges in L1 to 0.
[1 point] for the correct computation
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(7) Fix any ε ∈]0,1[. Using the Taylor expansion exp(x) = 1+x+o(x), which implies that 1−exp(x) ∼ −x
as x→ 0, we have

P (Yn ≥ ε) = 1− ε1/n = 1− exp
(1
n

ln(ε)
)

∼
n→∞

−1
n

ln(ε),

so that ∑
n≥1

P (Yn ≥ ε) =∞.

Since the events {Yn ≥ ε} are independent, by the second Borel-Cantelli lemma almost sureley
Yn ≥ ε infinitely often.
[1 points] for application of Borel–Cantelli 2 with {Yn ≥ ε}

Similarly, P (Yn < ε) = exp(1n ln(ε))→ 1, so∑
n≥1

P (Yn ≤ ε) =∞.

Since the events {Yn ≤ ε} are independent, by the second Borel-Cantelli lemma almost surely
Yn ≤ ε infinitely often.
[1 point] for application of Borel–Cantelli 2 with {Yn < ε}

Thus, almost surely Yn ≥ ε infinitely often and Yn ≤ ε infinitely often. This shows that a.s. (Yn)
diverges.
[1 point] for the conclusion

□
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Exercise 3. [9 points] Let Ω be a set and let A be a σ -field on Ω. Let H be a set of functions from Ω to
R which satisfies the following two properties:

– H contains all constant functions and is stable under increasing limits (that is if f : E → R is a
funtion with f = limfn with (fn)n≥1 is a sequence of elements of H such that fn(ω) ≤ fn+1(ω) for every
ω ∈Ω and n ≥ 0, then f ∈H).

– H is a vector space (that is, if a,b ∈R and f ,g ∈H then af + bg ∈H).

(1) [2 points] State the Dynkin Lemma.

(2) [3 points] Show that B = {A ∈ A : 1A ∈H} is a Dynkin system.

(3) [4 points] Let C ⊂ A be a generating π-system ofA. Assume that 1A ∈H for every A ∈ C. Show that
H contains all A-measurable real-valued functions.

Hint. First use the Dynkin Lemma to show that H contains all functions of the form 1A with A ∈ A.

Solution:

(1) Dynkin Lemma. Let Ω be a set and let C ⊂ P (Ω) be a collection of subsets of Ω. Assume that C
is stable by finite intersections. Then the Dynkin system generated by C is equal to the σ -field
generated by C.
[2 points] for the correctstatement.

(2) We check the three properties defining a Dynkin system:

(a) Ω ∈ B because the constant function equal to 1 is in H .

(b) If A ∈ B, then 1Ac = 1−1A because 1 and 1A are in H and H is a vector space.

(c) If (An)n≥1 is a pairwise disjoint sequence of elements of B, set A = ∪n≥1An and then observe
that

1A = lim
n→∞

n∑
k=1

1Ak
,

where the limit is increasing. In addition 1Ak
∈H since H is a vector space. Since H is stable

under increasing limits, we conclude that 1A is in H

[4 points] 1 point for (a), 1 point for (b), 2 points for (c)

(3) Step 1. By question (2), B is a Dynkin system containing C. Therefor B contains the Dynkin sys-
tem generated by C. Since C is a π-system, by the Dynkin Lemma the Dynkin system generated
by C is σ (C), which is A. We conclude that B =A, so that H contains all functions of the form 1A
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with A ∈ A.
[1 point] for step 1

Step 2. Since H is a vector space, by linearity H contains all simple A-measurable functions.
[1 point] for step 2

Step 3. H contains all nonnegativeA-measurable functions, since every nonnegativeA-measurable
function is an increasing limit of A-measurable simple functions and H is stable under increas-
ing limits.
[1 point] for step 3

Step 4. H contains all A-measurable functions, since every A-measurable function can be writ-
ten as a difference of two nonngative A-measurable functions and H is a vector space.
[1 point] for step 4

□
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Exercise 4. 10 points Fix an integer n ≥ 2 and let (Uk)1≤k≤n be independent random variables, all fol-
lowing the uniform distribution on [0,1]. Define

Mn = max
(
1
√
U1

, . . . ,
1
√
Un

)
.

(1) [3 points] Compute the cumulative distribution function of Mn.

(2) [2 points] Show that x2P (Mn ≥ x)→ n as x→∞.

(3) [2 points] Let X be a nonnegative real-valued random variable. Show that E [X] =
∫∞
0 P (X ≥ u)du.

Note. This question is independent of questions (1) and (2).

(4) [3 points] For what values of p > 0 do we have E

[
M

p
n

]
<∞?

Note. You may use the results of the previous questions even if you didn’t manage to solve them.

Solution:

(1) For u ∈ [0,1], we have 1√
u
≥ 1. As a consequence for x < 1 we have P (Mn ≤ x) = 0.

[1 point for the case x < 1]
For x ≥ 1 we have:

P (Mn ≤ x) = P

(
1
√
U1
≤ x, · · · , 1√

Un
≤ x

)
= P

(
U1 ≥

1
x2

)
· · ·P

(
Un ≥

1
x2

)
= P

(
U1 ≥

1
x2

)n
=

(
1− 1

x2

)n
.

The second equality follows from independence and the third one from the fact that (Ui)1≤i≤n
have same law.
[1 point] for the second equality

[1 point] for the the final result

(2) By (1), for x ≥ 1 we have

P (Mn ≥ x) = 1−P (Mn < x) = 1−
(
1− 1

x2

)n
.

By the Binomial formula, (
1− 1

x2

)n
=

n∑
k=0

(
n
k

)
(−1)k

x2k ,

so

x2P (Mn ≥ x) = x2
(
1−

(
1− 1

x2

)n)
=

n∑
k=1

(
n
k

)
(−1)k+1

x2k−2
= n+

n∑
k=2

(
n
k

)
(−1)k+1

x2k−2
−→
x→∞

n
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[2 points] for justification and conclusion

(3) By Fubini-Tonelli’s theorem for nonnegative functions:

E [X] = E

[∫ ∞
0
1u≤Xdu

]
=

∫ ∞
0

E [1u≤X]du =
∫ ∞
1

P (X ≥ u)du.

[1 point] for making E and
∫

appear at the same time

[1 point] for citing Fubini theorem for nonnegative functions

(4) Here Mn ≥ 0.
[1 point] for checking Mn ≥ 0

We have by question (3)

E

[
M

p
n

]
=

∫ ∞
0

P

(
M

p
n ≥ u

)
du =

∫ ∞
0

P

(
Mn ≥ u1/p

)
du = 1+

∫ ∞
1

P

(
Mn ≥ u1/p

)
du.

[1 point for this expression]
But for u ≥ 1:

P

(
Mn ≥ u1/p

)
=
1

u2/p

(
u2/pP

(
Mn ≥ u1/p

))
∼

u→∞
n

u2/p
.

by question (2). But 1/u2/p is integrable at infinity if and only if 2/p > 1 (Riemann integral). Thus
E

[
M

p
n

]
<∞ if and only if p < 2.

[1 points] conclusion.

□
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