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Sample PT 2023 ETHZ exam | [ Total number of points: 50]

At any point you can use results proved in the leture without proof, unless explicitely asked for a
proof. If you use a result from the leture, please reference it appropriately.

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

Intermediate Steps may be marked.
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Faercise 1. [17 points]

Let (X,),>; be a sequence of i.i.d. random variables following the exponential

distribution of parameter 1.

(1)

(2)

[10 points] | Let (A,),>, be a sequence of events. Give the definition of the event limsupA,,. State

and prove the Borel-Cantelli Lemmas.

[2 points] | Fix ¢ > 1. Show that

IP(X,, > cIn(n) for infinitely many n) = o.

[2 points] | Fix ¢ € (0, 1] Show that

IP (X, > cIn(n) for infinitely many n) = 1.

[3 points] |Fix ¢ > 0. Compute, with justification, the quantity

P (X,, < cIn(n) for infinitely many n).

Solution:

(1) Let (A,),>, be a sequence of events. We write

limsupA, = ﬂ UAk.

n=ok>n

[1 points] giving the definition of limsupA,,

Borel-Cantelli 1. If } > P(A,) < oo, then P(limsupA,) = o.

[1 point] corredt statement

Proof. For n > 1, limsup A, C s>, Ak, so by monotonicity

P (limsupA,) <P UAk < E P(Ay) — o
n—-o0
k=n k=n

[1 point] justification of the fir$t inequality

as the remainder of a convergent series.

[1 point] justification of why ) > P(A;) — o

Borel-Cantelli 2. If } > P(A,) = oo and if (A4,,),,>, are independent, then P (limsupA4,,) = 1.

[1 point] corre&t statement
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Proof. Fix n > ¢ > 1 and write

=| [P(ag)=] [-P4p)
k=¢ k=¢

P

n
A
k=¢

[1 point] for these equalities with justification

where we have used independence for the fir§t equality. Using the inequality In(1 —x) < —x valid
for o <x <1, we get

n

| [a-Pa) =exp

k=¢

<exp

k=I

) In(1—TP(Ay))

k=¢

[1 point] the 1ast inequality with justification

But ) }_;IP(Ay) = oo as n — oo, 50
n

]_[(1 -PP(A;) — o

n—o0
k=€

[1 point] this convergence — o with justification

But
n
Bk
k=¢

as a decreasing sequence of events. Thus

P

— P
n—o00

s
k=C

Thus

[1 point] this probability = o with justification

and by complementation we get

P (limsupA,) =P =1-P =1.

N

(=1 k=¢C

NUA

(=1 k=C

[1 point] conclusion by complementation
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(2) We have IP(X,, > a) =¢“ for everya > o

[1 point] for this expression

, SO
_ 1
P (X, > cln(n)) = e~ = ot

Thus, for ¢ > 1, we have ) ), # < 0.

[1 point] for the convergence of this sum

The conclusion follows from the first Borel-Cantelli Lemma, since limsupA,, is the event “A,,

occurs for infinitely many n”.

(3) For c € (o,1], we have } ;7 - = co.

[1 point] for the divergence of this sum

Since the events {X,, > cIn(n)} are independent, the conclusion follows from the second Borel-
Cantelli Lemma.

[1 point] for §tating the independence hypothesis

(4) We have P(X,, <cln(n))=1-1/n°—>1.So ) ;- P(X, < cln(n))
[1 point] for the divergence of this sum

Q.

Since the events {X,, > cIn(n)} are independent, by the second Borel-Cantelli Lemma we get

P (X,, < cIn(n) for infinitely many n) = 1.

[1 point] for the independence hypothesis

[1 point] for using the Borel-Cantelli Lemma
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Z:Pcercise 2. |[14 points] | Let (X,),>, be a sequence of independent random variables which follow the

uniform di§tribution on [o,1]. Set Y,, = (X,,)".

(1) | [4 points]

State and prove the transfer theorem.

(2) |[1 point]

Compute (with justification) E[X,].

(3) | [2 points]

Let F : R — IR, be measurable. Using the transfer theorem, write IE[F(Y,,)] as an integral

on [0, 1] with respeét to the Lebesgue measure. Please write explicitly with what fun&ion and what

random variable you apply the transfer theorem with.

(4) | [2 points]

Using the dummy function method, deduce that Y, is a random variable with a density,

(5) | [1 point]

(6) |[1 point]

and give an expression of this density.

Show that Y,, converges in probability to o as n — co.

Show that Y,, converges in L' as n — oo.

(7) | [3 points]

Does Y, converge almost surely as n — oo? Justify your answer.

Solution:

(1) Transfer

theorem. Let X : () — E be a random variable and f : E — R, a measurable function.

Then E[f(X)] = fE x)[Px(dx) where Py is the law of X.

[1 points] corret Statement

Proof. Step 1. Take f = 1, with A € £. Then E[14(X)] = E[lxea] =IP(X € A) and [ 1,4(x)Px(dx) =

Py (A)

=P(X e€A).

[1 point] checking for indicators

Step 2. By linearity, the result is true for any nonnegative simple function.

[1 point] getting the result for nonnegative simple fun&ions

We then take a sequence (f,) of simple funétions such that o < f, < f and f, T f. By $tep 1:

- f £(x)Px(dx)
E

and by monotone convergence (twice)

and

X)] = Lfn(X(w))IP(dw) — [ rx(@)Pw) = ElF )

n—-0o0 Jo

Lfnmlpx(dx) — [ repxan.

n—oo JE
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[1 point] Conclusion by monotone convergence

(2) Using the transfer theorem with the fun&tion f(x) = x for x € [0, 1], we have

IE[Xl]:J xdx =1,

2

[1 point] obtaining the result with justification using the transfer theorem

(3) We apply the transfer theorem with the random variable X, and the function f(x) = F(x") to get

BIF(Y,)] = BIFO)] = | FO)ds

o

[1 point] obtaining the result with justification using the transfer theorem

(4) We perfom the change of variables y = x", which gives x = y*/", so dx = 1y*/"dy:

BIF(Y)] = [ Fidc= | Fp)iy oy

We conclude that Y, has density %yl/”_l on [o,1].

[1 point] attempting a change of variables

[1 point] corre&t result

For e € (0,1), P(|Y,|=>¢)=1— " _5 5 when n — oo, which gives the result.
5 g

[1 point]

(6) using the transfer theorem, since |Y,| =Y, we get

1 1/n—1 1
1 1
IE[YH]:J xx dx:ij xM"dx = = — o.
0] n (o]

n n1+1/n n-oeo

Thus Y, converges in L* to o.

[1 point] for the corre&® computation
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(7) Fix any € €]o, 1[. Using the Taylor expansion exp(x) = 1+x+o0(x), which implies that 1—exp(x) ~ —x

as x — o, we have

P(Y,>e)=1-¢"" :1—exp(%ln(e)) ~ —iln(e),

n—-o0 n

so that

Z]P(Yn > ¢) = oo.

n>1
Since the events {Y,, > ¢} are independent, by the second Borel-Cantelli lemma almost sureley

Y, > ¢ infinitely often.

[1 points] for application of Borel-Cantelli 2 with {Y,, > ¢}

Similarly, IP (Y, < €) = exp(;;In(¢)) — 1, so
Z]P(Yn <€)= oo
nx1

Since the events {Y,, < ¢} are independent, by the second Borel-Cantelli lemma almost surely

Y, < ¢ infinitely often.

[1 point] for application of Borel-Cantelli 2 with {Y, < ¢}

Thus, almost surely Y, > ¢ infinitely often and Y,, < ¢ infinitely often. This shows that a.s. (Y},)
diverges.

[1 point] for the conclusion




Prof. Igor Kortchemski ETHZ - Probability Theory Autumn 2023

f?(ercise 3. |[9 points] | Let Q) be a set and let A be a o-field on Q). Let H be a set of funétions from Q to

IR which satisfies the following two properties:

— H contains all cons$tant functions and is stable under increasing limits (that is if f : E > R is a
funtion with f =lim f, with (f,,),>, is a sequence of elements of H such that f,(w) < f,.;, (w) for every
w € and n > o, then f € H).

— H is a vetor space (thatis,if a,b € Rand f,g € H then af + bg € H).

(1) |[2 points]|State the Dynkin Lemma.

(2) |[3 points]|Show that B ={A € A:1, € H}is a Dynkin sy$tem.

(3) |[4 points]|Let C C A be a generating rt-syStem of .A. Assume that 14 € H for every A € C. Show that

H contains all A-measurable real-valued funétions.

Hint. First use the Dynkin Lemma to show that H contains all functions of the form 1, with A € A.

Solution:

(1) Dynkin Lemma. Let Q) be a set and let C C P(Q)) be a colleltion of subsets of (). Assume that C
is Stable by finite intersetions. Then the Dynkin syStem generated by C is equal to the o-field
generated by C.

[2 points] for the correlt statement.

(2) We check the three properties defining a Dynkin system:

(a) Q) € B because the constant function equal to 1 is in H.
(b) If Ae B, then 14c =1—14 because 1 and 14 are in H and H is a vector space.

(c) If (A,),>, is a pairwise disjoint sequence of elements of 13, set A = U5, A,, and then observe
that

n
]lA = lim ZﬂAk’
n—o00
k=1

where the limit is increasing. In addition 14, € H since H is a vector space. Since H is Stable
under increasing limits, we conclude that 1,4 is in H

[4 points] 1 point for (a), 1 point for (b), 2 points for (c)

(3) Step 1. By question (2), B is a Dynkin system containing C. Therefor B contains the Dynkin sys-
tem generated by C. Since C is a rt-system, by the Dynkin Lemma the Dynkin system generated
by C is ¢(C), which is A. We conclude that 5 = A, so that H contains all funétions of the form 1,4
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with A € A.
[1 point] for §tep 1

Step 2. Since H is a veltor space, by linearity H contains all simple A-measurable functions.

[1 point] for §tep 2

Step 3. H contains all nonnegative A-measurable funtions, since every nonnegative .A-measurable
function is an increasing limit of .A-measurable simple functions and H is Stable under increas-
ing limits.

[1 point] for $tep 3

Step 4. H contains all ./A-measurable functions, since every .A-measurable function can be writ-

ten as a difference of two nonngative .A-measurable functions and H is a vector space.

[1 point] for §tep 4
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Z:Pcercise 4. Fix an integer n > 2 and let (Uy),<k<, be independent random variables, all fol-

lowing the uniform di$tribution on [o, 1]. Define

[3 points]

[2 points]

[2 points]

1 1
M, = max( beees )
' VU, VO,
Compute the cumulative distribution funtion of M,,.

Show that x*IP(M,, > x) — n as x — oo.

Let X be a nonnegative real-valued random variable. Show that [E[X] = JOOO P(X >u)du.

Note. This question is independent of questions (1) and (2).

[3 points]

For what values of p > o do we have E [Mﬁ] < co?

Note. You may use the results of the previous questions even if you didn’t manage to solve them.

Solution:

(1) For u € [o,1], we have 4= > 1. As a consequence for x < 1 we have IP(M,, < x) = o.

T

[1 point for the case x < 1]

For x > 1 we have:

P(M, <x)=P|—— <x,---,— Sx):IP(Ulz

) oz )= r{vz ) < (-]
R R Ao A A
The second equality follows from independence and the third one from the fact that (U;),<i<y

have same law.

[1 point] for the second equality

[1 point] for the the final result

(2) By (1), for x > 1 we have

By the Binomial formula,

k=0 ’
SO § . ) )
3 n B n (_1) +1 B n (_1) +1
szP(Mn>X)_x2(1_(1_F) )_ (k) x2k—2 =nt (k) x2k—2 o

10
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[2 points] for justification and conclusion

(3) By Fubini-Tonelli’s theorem for nonnegative functions:

E[X] = IEle 1u5Xdu] - me[lusx]du - folp(x > u)du.

[1 point] for making [E and f appear at the same time

[1 point] for citing Fubini theorem for nonnegative funtions

(4) Here M,, > o.
[1 point] for checking M,, > o

We have by question (3)

E[M}]= J;OOP(Mﬁ > u)du :L

(o)

P (M, > u*?)du =1+ Jmm(Mn > u'?)du.
1

[1 point for this expression]|

But for u > 1:
n

P(M, > u'?)= —(uz/pIP(Mn > ul/P)) ~

uz/P U—00 u2/P'

by question (2). But 1/u?? is integrable at infinity if and only if 2/p > 1 (Riemann integral). Thus
IE[M,Q] <coif and only if p < 2.

[1 points] conclusion.

11




