The Brownian Ilniverse

Limacodidae Caterpillar © John Horstman

Brownian sphere © Igor Kortchemski

Igor Kortchemski
ETH Zürich

Probability Theory - Autumn 2023

General framework

Let X_{n} be a set of combinatorial objects of "size" n

General framerwork

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

General framerwork

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.

General framerwork

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.
\leadsto Find the cardinality of X_{n}.

General framerwork

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.
\leadsto Find the cardinality of X_{n}. (bijective methods, generating functions)

General framerwork

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.
\leadsto Find the cardinality of X_{n}. (bijective methods, generating functions)
\diamond Understand the typical properties of X_{n}.

General framerwork

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.
\checkmark Find the cardinality of \mathcal{X}_{n}. (bijective methods, generating functions)
$\xrightarrow{\rightarrow}$ Understand the typical properties of X_{n}. Let X_{n} be an element of X_{n} chosen uniformly at random.

General framerwork

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.
\leadsto Find the cardinality of X_{n}. (bijective methods, generating functions)
\leadsto Understand the typical properties of X_{n}. Let X_{n} be an element of X_{n} chosen uniformly at random. What can be said of X_{n} ?

General framework

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.
\checkmark Find the cardinality of X_{n}. (bijective methods, generating functions)
\leadsto Understand the typical properties of X_{n}. Let X_{n} be an element of X_{n} chosen uniformly at random. What can be said of X_{n} ?

To answer this question, a possibility is to find a continuous object X such that $X_{n} \rightarrow X$ as $n \rightarrow \infty$.

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discret" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X
$$

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discret" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several uses:
\diamond From the discrete to the continuous: if a certain property \mathcal{P} is satisfied by all the X_{n} and passes through the limit, X satisfies \mathcal{P}.

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discret" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several uses:
\wedge From the discrete to the continuous: if a certain property \mathcal{P} is satisfied by all the X_{n} and passes through the limit, X satisfies \mathcal{P}.
\checkmark From the continuous to the discrete: if a certain property \mathcal{P} is satisfied by X and passes through the limit, X_{n} "roughly" satisfies \mathcal{P} for n large.

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discret" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several uses:
\wedge From the discrete to the continuous: if a certain property \mathcal{P} is satisfied by all the X_{n} and passes through the limit, X satisfies \mathcal{P}.
\checkmark From the continuous to the discrete: if a certain property \mathcal{P} is satisfied by X and passes through the limit, X_{n} "roughly" satisfies \mathcal{P} for n large.
\leadsto Universality: if $\left(Y_{n}\right)_{n \geqslant 1}$ is another sequence of objects converging to X, then X_{n} and Y_{n} "roughly" have the same properties for n large.

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\diamond In what space do the objects live?

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\checkmark In what space do the objects live? Here, a metric space (E, d).

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\diamond In what space do the objects live? Here, a metric space (E, d). \checkmark What is the sense of this convergence when these objects are random?

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

$\wedge \rightarrow$ In what space do the objects live? Here, a metric space (E, d). \checkmark What is the sense of this convergence when these objects are random? Here, convergence in distribution:

$$
\mathbb{E}\left[F\left(X_{n}\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[F(X)]
$$

for every continuous bounded function $F: E \rightarrow \mathbb{R}$.

Outline

I. Random paths (1951)

Outline

I. RANDOM PATHS (1951)
 II. RANDOM TREES (1994)

Outline

I. Random paths (1951)
II. Random trees (1994)

III. RANDOM SURFACES (2004)

I. Random paths (1951)

II. Random trees (1994)

III. Random surfaces (2004)

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901)

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}\left[\mathrm{X}_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[\mathrm{X}_{1}{ }^{2}\right]$. Assume $\sigma^{2} \in(0, \infty)$.

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901) Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}\left[\mathrm{X}_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[\mathrm{X}_{1}{ }^{2}\right]$. Assume $\sigma^{2} \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901) Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}\left[\mathrm{X}_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[\mathrm{X}_{1}{ }^{2}\right]$. Assume $\sigma^{2} \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{(\mathrm{~d})} \mathcal{N}(0,1)
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901) Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}\left[\mathrm{X}_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[\mathrm{X}_{1}{ }^{2}\right]$. Assume $\sigma^{2} \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \mathcal{N}(0,1),
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.
\checkmark Beware of the notion of convergence!

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901) Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]$. Assume $\sigma^{2} \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{(\mathrm{~d})} \mathcal{N}(0,1)
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.
$\xrightarrow{\wedge}$ Beware of the notion of convergence!

Figure: A simulation of $\left(\frac{s_{k}}{\sqrt{k}}\right)_{1 \leqslant k \leqslant n}$ for $n=1000$.

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901) Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}\left[\mathrm{X}_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[\mathrm{X}_{1}{ }^{2}\right]$. Assume $\sigma^{2} \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \mathcal{N}(0,1)
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.
\checkmark Beware of the notion of convergence!

Figure: Five simulations of $\left(\frac{s_{k}}{\sqrt{k}}\right)_{1 \leqslant k \leqslant n}$ for $n=1000$.

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901) Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}\left[\mathrm{X}_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[\mathrm{X}_{1}{ }^{2}\right]$. Assume $\sigma^{2} \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \mathcal{N}(0,1)
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.
\wedge Beware of the notion of convergence!

Figure: 1000 simulations of $\left(\frac{s_{k}}{\sqrt{k}}\right)_{1 \leqslant k \leqslant n}$ for $n=1000$.

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901) Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}\left[\mathrm{X}_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[\mathrm{X}_{1}{ }^{2}\right]$. Assume $\sigma^{2} \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \mathcal{N}(0,1)
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.
\checkmark Beware of the notion of convergence!

Figure: 1000 simulations of $\left(\frac{s_{k}}{\sqrt{k}}\right)_{1 \leqslant k \leqslant n}$ for $n=1000$.

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}\left[\mathrm{X}_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[\mathrm{X}_{1}{ }^{2}\right]$. Assume $\sigma^{2} \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \mathcal{N}(0,1)
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.
$\stackrel{\text { Consequence: for every } a<b, ~}{\text { a }}$

$$
\mathbb{P}\left(a<\frac{S_{n}}{\sigma \sqrt{n}}<b\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{a}^{b} d x \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} .
$$

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$.

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For $t \geqslant 0$, define S_{t} by linear interpolation.

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For $t \geqslant 0$, define S_{t} by linear interpolation. What does $\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)$ look like?

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For $t \geqslant 0$, define S_{t} by linear interpolation. What does $\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)$ look like?

$$
\begin{aligned}
& \left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \\
& \text { for } n=100:
\end{aligned}
$$

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For $t \geqslant 0$, define S_{t} by linear interpolation. What does $\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)$ look like?

$$
\begin{aligned}
& \left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \\
& \text { for } n= \\
& 100000:
\end{aligned}
$$

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For $t \geqslant 0$, define S_{t} by linear interpolation. What does $\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)$ look like?

$$
\begin{aligned}
& \left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \\
& \text { for } n= \\
& 100000:
\end{aligned}
$$

Here, $E=\mathcal{C}([0,1], \mathbb{R})$ is the space of real-valued continuous functions on $[0,1]$ equipped with the uniform norm.

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For $t \geqslant 0$, define S_{t} by linear interpolation. What does $\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)$ look like?
Theorem (Donsker, 1951)
We have the convergence in distribution

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(W_{t}, t \geqslant 0\right)
$$

in the space $\mathcal{C}([0,1], \mathbb{R})$,

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For $t \geqslant 0$, define S_{t} by linear interpolation. What does $\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)$ look like?
Theorem (Donsker, 1951)
We have the convergence in distribution

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}\left(W_{t}, t \geqslant 0\right)
$$

in the space $\mathcal{C}([0,1], \mathbb{R})$, where $\left(W_{t}, t \geqslant 0\right)$ is a continuous function called Brownian motion (independent of σ).

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For $t \geqslant 0$, define S_{t} by linear interpolation. What does $\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)$ look like?
Theorem (Donsker, 1951)
We have the convergence in distribution

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}\left(W_{t}, t \geqslant 0\right),
$$

in the space $\mathcal{C}([0,1], \mathbb{R})$, where $\left(W_{t}, t \geqslant 0\right)$ is a continuous function called Brownian motion (independent of σ).
\leadsto Consequence: using the fact that sup : $\mathcal{C}([0,1], \mathbb{R}) \rightarrow \mathbb{R}$ is continuous, we get that for every $a>0$,

$$
\mathbb{P}\left(\frac{\max _{0 \leqslant i \leqslant n} S_{i}}{\sigma \sqrt{n}}>a\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(\sup _{0 \leqslant t \leqslant 1} W_{t}>a\right)
$$

Brownian motion, limiting object

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For $t \geqslant 0$, define S_{t} by linear interpolation. What does $\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)$ look like?
Theorem (Donsker, 1951)
We have the convergence in distribution

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}\left(W_{t}, t \geqslant 0\right),
$$

in the space $\mathcal{C}([0,1], \mathbb{R})$, where $\left(W_{t}, t \geqslant 0\right)$ is a continuous function called Brownian motion (independent of σ).
\leadsto Consequence: using the fact that sup : $\mathcal{C}([0,1], \mathbb{R}) \rightarrow \mathbb{R}$ is continuous, we get that for every $a>0$,

$$
\mathbb{P}\left(\frac{\max _{0 \leqslant i \leqslant n} S_{i}}{\sigma \sqrt{n}}>a\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(\sup _{0 \leqslant t \leqslant 1} W_{t}>a\right)=2 \int_{a}^{\infty} d x \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Brownian motion

Brownian motion

- 1827: Brown observes the disordered movement of pollen in water;

Brownian motion

- 1827: Brown observes the disordered movement of pollen in water;

Brownian motion

- 1827: Brown observes the disordered movement of pollen in water;
- 1905: Einstein proposes an explanation of this observation using the concepts of atoms and molecules;

Brownian motion

- 1827: Brown observes the disordered movement of pollen in water;
- 1905: Einstein proposes an explanation of this observation using the concepts of atoms and molecules;
- 1908: Perrin experimentally confirmed the existence of atoms and molecules (Nobel Prize 1926);

Brownian motion

- 1827: Brown observes the disordered movement of pollen in water;
- 1905: Einstein proposes an explanation of this observation using the concepts of atoms and molecules;
- 1908: Perrin experimentally confirmed the existence of atoms and molecules (Nobel Prize 1926);
"This is a case where it's really natural to think of those continuous functions without derivatives that mathematicians have imagined, and which were wrongly regarded as mere mathematical curiosities, since experience can suggest them."
- Jean Perrin

Brownian motion

- 1827: Brown observes the disordered movement of pollen in water;
- 1905: Einstein proposes an explanation of this observation using the concepts of atoms and molecules;
- 1908: Perrin experimentally confirmed the existence of atoms and molecules (Nobel Prize 1926);
- 1923: Wiener gives a mathematical construction of Brownian motion.

Theorem (conditioned Donsker, Kaigh '75)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]<\infty$.

Theorem (conditioned Donsker, Kaigh '75)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.

Theorem (conditioned Donsker, Kaigh '75)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{(d)}
$$

Theorem (conditioned Donsker, Kaigh '75)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}\left(e_{t}, 0 \leqslant t \leqslant 1\right),
$$

Theorem (conditioned Donsker, Kaigh '75)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \quad \underset{n \rightarrow \infty}{(d)} \quad\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right),
$$

where $\left(\mathbb{e}_{\mathrm{t}}\right)_{0 \leqslant t \leqslant 1}$ is a random continuous function called Brownian excursion.

Theorem (conditioned Donsker, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{(d)}\left(e_{t}, 0 \leqslant t \leqslant 1\right),
$$

where $\left(\mathbb{P}_{\mathrm{t}}\right)_{0 \leqslant t \leqslant 1}$ is a random continuous function called Brownian excursion.

Theorem (conditioned Donsker, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \quad \underset{n \rightarrow \infty}{(d)} \quad\left(\mathbb{P}_{t}, 0 \leqslant t \leqslant 1\right)
$$

where $\left(\mathbb{e}_{t}\right)_{0 \leqslant t \leqslant 1}$ is a random continuous function called Brownian excursion.

The Brownian excursion can be seen as Brownian motion ($W_{t}, 0 \leqslant t \leqslant 1$) conditioned by $W_{1}=0$ and $W_{t}>0$ for $t \in(0,1)$.

Theorem (conditioned Donsker, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{(d)}\left(e_{t}, 0 \leqslant t \leqslant 1\right),
$$

where $\left(\mathbb{e}_{\mathrm{t}}\right)_{0 \leqslant t \leqslant 1}$ is a random continuous function called Brownian excursion.
\leadsto Consequence: for every $a>0$,

$$
\mathbb{P}\left(\left.\sup _{0 \leqslant t \leqslant 1} \frac{S_{n t}}{\sigma \sqrt{n}}>a \right\rvert\, S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right)
$$

Theorem (conditioned Donsker, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) \text {, }
$$

where $\left(\mathbb{e}_{\mathrm{t}}\right)_{0 \leqslant t \leqslant 1}$ is a random continuous function called Brownian excursion.
\leadsto Consequence: for every $a>0$,

$$
\begin{aligned}
& \mathbb{P}\left(\left.\sup _{0 \leqslant t \leqslant 1} \frac{S_{n t}}{\sigma \sqrt{n}}>a \right\rvert\, S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \\
& \underset{n \rightarrow \infty}{ } \mathbb{P}\left(\sup _{0 \leqslant t \leqslant 1} \mathbb{E}_{t}>a\right)
\end{aligned}
$$

Theorem (conditioned Donsker, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) \text {, }
$$

where $\left(\mathbb{e}_{\mathrm{t}}\right)_{0 \leqslant t \leqslant 1}$ is a random continuous function called Brownian excursion.
\leadsto Consequence: for every $a>0$,

$$
\begin{aligned}
& \mathbb{P}\left(\left.\sup _{0 \leqslant t \leqslant 1} \frac{S_{n t}}{\sigma \sqrt{n}}>a \right\rvert\, S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \\
& \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(\sup _{0 \leqslant t \leqslant 1} \mathbb{e}_{t}>a\right) \\
&=\sum_{k=1}^{\infty}\left(4 k^{2} a^{2}-1\right) e^{-2 k^{2} a^{2}}
\end{aligned}
$$

I. RANDOM PATHS (1951)

II. RANDOM TREES (1994)

III. RANDOM SURFACES (2004)

Random trees

Motivations:
\diamond Computer Science: data structures, analysis of algorithms, networks, etc.

Random trees

Motivations:
\uparrow Computer Science: data structures, analysis of algorithms, networks, etc.
$\xrightarrow{\wedge}$ Biology: genealogical and phylogenetical trees, etc.

Random trees

Motivations:
\diamond Computer Science: data structures, analysis of algorithms, networks, etc.
$\xrightarrow{\wedge}$ Biology: genealogical and phylogenetical trees, etc.
\leadsto Combinatorics: trees are (sometimes) simpler to count, there are nice bijections, etc.

Random trees

Motivations:
\diamond Computer Science: data structures, analysis of algorithms, networks, etc.
\nrightarrow Biology: genealogical and phylogenetical trees, etc.
\leadsto Combinatorics: trees are (sometimes) simpler to count, there are nice bijections, etc.
\diamond Probability: trees are building blocks of several models of random graphs, having rich probabilistic properties.

Plane trees

Let X_{n} be the set of all plane trees with n vertices.

Plane trees

Let X_{n} be the set of all plane trees with n vertices.

Figure: Two different plane trees

Plane trees

Let X_{n} be the set of all plane trees with n vertices.

Figure: Two different plane trees
\diamond Question: What does a large typical plane tree look like?

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random.
\checkmark What is the order of magnitude of the diameter of \mathcal{T}_{n} ?

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random.
\checkmark What is the order of magnitude of the diameter of \mathcal{T}_{n} ?
\diamond wooclap.com; code probability.

What metric space for \mathcal{T}_{n} ?

Coding a tree by its contour function

We code a tree τ by its contour function $C(\tau)$:

Coding a tree by its contour function

Knowing the contour function, it is easy to recover the tree:

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random.

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1}
$$

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1}
$$

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{C}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{C}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.
\checkmark Consequence: for every $a>0$,

$$
\mathbb{P}\left(\operatorname{Height}\left(\mathcal{T}_{n}\right)>a \cdot \sqrt{2 n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}(\sup \mathbb{E}>a)
$$

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{E}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.
\checkmark Consequence: for every $a>0$,

$$
\begin{aligned}
\mathbb{P}\left(\operatorname{Height}\left(\mathcal{T}_{n}\right)>a \cdot \sqrt{2 n}\right) & \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}(\sup \mathbb{e}>a) \\
& =\sum_{k=1}^{\infty}\left(4 k^{2} a^{2}-1\right) e^{-2 k^{2} a^{2}}
\end{aligned}
$$

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{C}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{C}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.

Why?

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{E}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.

$$
\begin{aligned}
& \quad\left(C_{0}, \ldots, C_{2(n-1)}\right) \stackrel{(\mathrm{d})}{=} \\
& \left(S_{0}, \ldots, S_{2(n-1)}\right) \quad \text { under } \mathbb{P}\left(\cdots \mid S_{2 n-2}=0, S_{i} \geqslant 0 \text { for } i<2 n-2\right)
\end{aligned}
$$

where $\left(S_{k}\right)_{k \geqslant 0}$ is the random walk with jumps ± 1 with probability $1 / 2$.

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\xrightarrow{(d)}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{C}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.
\checkmark We get the desired result with the extension of Donsker's theorem to the conditioned case.

Scaling limits

Let $\mathcal{T}_{\mathfrak{n}}$ be a uniform plane tree with \mathfrak{n} vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{C}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.
\checkmark Extension to a more general class of random plane trees:
Bienaymé-Galton-Watson trees with critical finite variance offspring distribution, conditioned on having a large number of vertices.

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\xrightarrow{(d)}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{C}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.
? Can we say that $\mathcal{T}_{\mathfrak{n}}$, appropropriately rescaled, converges to a limiting continuous random tree?

Scaling limits

Let \mathcal{T}_{n} be a uniform plane tree with n vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\xrightarrow{(d)}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{C}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.
? Can we say that \mathcal{T}_{n}, appropropriately rescaled, converges to a limiting continuous random tree?
\wedge Consequence 2: Yes,

Scaling limits

Let $\mathcal{T}_{\mathfrak{n}}$ be a uniform plane tree with \mathfrak{n} vertices chosen uniformly at random. Theorem (Aldous '93)
The convergence

$$
\left(\frac{1}{\sqrt{2 n}} C_{2(n-1) t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}}(\mathbb{e}(t))_{0 \leqslant t \leqslant 1},
$$

holds in distribution in the space $\mathcal{C}([0,1], \mathbb{R})$ of continuous funtions $[0,1] \rightarrow \mathbb{R}$ equipped with the topology of uniform convergence, where \mathbb{e} is the normalized Bronwian excursion.
? Can we say that \mathcal{T}_{n}, appropropriately rescaled, converges to a limiting continuous random tree?
\downarrow Consequence 2: Yes, when we view $\mathfrak{T}_{\mathfrak{n}}$ as a compact metric space by equipping its vertices with the graph distance.

The Hausdorff distance

Let X, Y be two subsets of a same metric space Z.

The Hausdorff distance

Let X, Y be two subsets of a same metric space Z. If

$$
X_{r}=\{z \in Z ; d(z, X) \leqslant r\}, \quad Y_{r}=\{z \in Z ; d(z, Y) \leqslant r\}
$$

are the r-neighborhoods of X and Y

The Hausdorff distance

Let X, Y be two subsets of a same metric space Z. If

$$
X_{r}=\{z \in Z ; d(z, X) \leqslant r\}, \quad Y_{r}=\{z \in Z ; d(z, Y) \leqslant r\}
$$

are the r-neighborhoods of X and Y, we set

$$
d_{H}(X, Y)=\inf \left\{r>0 ; X \subset Y_{r} \text { and } Y \subset X_{r}\right\} .
$$

The Hausdorff distance

Let X, Y be two subsets of a same metric space Z. If

$$
X_{r}=\{z \in Z ; d(z, X) \leqslant r\}, \quad Y_{r}=\{z \in Z ; d(z, Y) \leqslant r\}
$$

are the r-neighborhoods of X and Y, we set

$$
d_{H}(X, Y)=\inf \left\{r>0 ; X \subset Y_{r} \text { and } Y \subset X_{r}\right\} .
$$

The Gromor-Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov-Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov-Hausdorff distance between X and Y is the smallest Hausdorff distance between all possible isometric embeddings of X and Y into a same metric space Z.

The Brownian tree

\diamond Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a random compact metric space $\mathcal{T}_{\mathbb{e}}$ such that the convergence

$$
\frac{1}{\sqrt{2 n}} \cdot \mathcal{T}_{n} \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \mathcal{T}_{\mathbb{e}}
$$

holds in distribution for the Gromov-Hausdorff distance.

The Brownian tree

\diamond Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a random compact metric space $\mathcal{T}_{\mathbb{e}}$ such that the convergence

$$
\frac{1}{\sqrt{2 n}} \cdot \mathcal{T}_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}} \mathcal{T}_{\mathbb{e}}
$$

holds in distribution for the Gromov-Hausdorff distance.
The metric space $\mathcal{T}_{\mathbb{e}}$ is called the Brownian random tree, and is coded by the Brownian excursion.

The Brownian tree

\diamond Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a random compact metric space $\mathcal{T}_{\mathbb{e}}$ such that the convergence

$$
\frac{1}{\sqrt{2 n}} \cdot \mathcal{T}_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}} \mathcal{T}_{\mathbb{e}},
$$

holds in distribution for the Gromov-Hausdorff distance.
The metric space $\mathcal{T}_{\mathbb{e}}$ is called the Brownian random tree, and is coded by the Brownian excursion.

I. Random paths

II. Random trees

III. RANDOM surfaces

\qquad
construct a random surface as a limit of random discrete surfaces.
construct a random surface as a limit of random discrete surfaces.
Consider \mathfrak{n} triangles, and glue them uniformly at random along edges so that one gets a surface homeomorphic to the sphere.

Figure: A large random triangulation of the sphere.

Figure: A large random triangulation of the sphere.

Figure: A large random triangulation of the sphere.
Let T_{n} be a triangulation of the sphere with n triangles chosen uniformly at random.

Figure: A large random triangulation of the sphere.
Let T_{n} be a triangulation of the sphere with n triangles chosen uniformly at random.
\checkmark What is the order of magnitude of the diameter of T_{n} ?

Figure: A large random triangulation of the sphere.
Let T_{n} be a triangulation of the sphere with n triangles chosen uniformly at random.
\checkmark What is the order of magnitude of the diameter of T_{n} ?
\leadsto wooclap.com ; code probability.

The Brownian sphere

Problem (Schramm at ICM 2006): Let T_{n} be a random uniform triangulation of the sphere with n triangles.

The Brownian sphere

Problem (Schramm at ICM 2006): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance.

The Brownian sphere

Problem (Schramm at ICM 2006): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges to a random compact metric space (the Brownian sphere)

The Brownian sphere

Problem (Schramm at ICM 2006): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges to a random compact metric space (the Brownian sphere), in distribution for the Gromov-Hausdorff distance.

The Brownian sphere

Problem (Schramm at ICM 2006): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges to a random compact metric space (the Brownian sphere), in distribution for the Gromov-Hausdorff distance.

Solves by Le Gall in 2011.

The Brownian sphere

Problem (Schramm at ICM 2006): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges to a random compact metric space (the Brownian sphere), in distribution for the Gromov-Hausdorff distance.

Solves by Le Gall in 2011.
Since, it has been shown that many other models of discrete random surfaces converge to the Brownian sphere (Miermont, Beltran \& Le Gall, Addario-Berry \& Albenque, Bettinelli \& Jacob \& Miermont, Abraham)

The Brownian sphere

Problem (Schramm at ICM 2006): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges to a random compact metric space (the Brownian sphere), in distribution for the Gromov-Hausdorff distance.

Solves by Le Gall in 2011.
Since, it has been shown that many other models of discrete random surfaces converge to the Brownian sphere (Miermont, Beltran \& Le Gall, Addario-Berry \& Albenque, Bettinelli \& Jacob \& Miermont, Abraham), by using various techniques (in particular bijective codings by labeled trees)

The Brownian sphere

Problem (Schramm at ICM 2006): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges to a random compact metric space (the Brownian sphere), in distribution for the Gromov-Hausdorff distance.

Solves by Le Gall in 2011.
Since, it has been shown that many other models of discrete random surfaces converge to the Brownian sphere (Miermont, Beltran \& Le Gall, Addario-Berry \& Albenque, Bettinelli \& Jacob \& Miermont, Abraham), by using various techniques (in particular bijective codings by labeled trees)
\diamond Motivations from theoretical physics (Liouville quantum gravity), links with Gaussian multiplicative chaos.

Compact Brownian surfaces II. Orientable surfaces

Jérémie Bettinelli* Grégory Miermont ${ }^{\dagger}$

December 26, 2022

Abstract

Fix an arbitrary compact orientable surface with a boundary and consider a uniform bipartite random quadrangulation of this surface with n faces and boundary component lengths of order \sqrt{n} or of lower order. Endow this quadrangulation with the usual graph metric renormalized by $n^{-1 / 4}$, mark it on each boundary component, and endow it with the counting measure on its vertex set renormalized by n^{-1}, as well as the counting measure on each boundary component renormalized by $n^{-1 / 2}$. We show that, as $n \rightarrow \infty$, this random marked measured metric space converges in distribution for the Gromov-Hausdorff-Prokhorov topology, toward a random limiting marked measured metric space called a Brownian surface.

This extends known convergence results of uniform random planar quadrangulations with at most one boundary component toward the Brownian sphere and toward the Brownian disk, by considering the case of quadrangulations on general compact orientable surfaces. Our approach consists in cutting a Brownian surface into elementary pieces that are naturally related to the Brownian sphere and the Brownian disk and their noncompact analogs, the Brownian plane and the Brownian half-plane, and to prove convergence results for these elementary pieces, which are of independent interest.

