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Random paths Random trees Random surfaces

General framework

Let Xn be a set of combinatorial objects of “size” n

(permutations, partitions,

graphs, functions, paths, matrices, etc.).

Goal: study Xn.

y Find the cardinality of Xn.

(bijective methods, generating functions)

y Understand the typical properties of Xn. Let Xn be an element of Xn

chosen uniformly at random. What can be said of Xn?

To answer this question, a possibility is to find a continuous object X
such that Xn ! X as n ! 1.
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Random paths Random trees Random surfaces

What is it about?

Let (Xn)n>1 be a sequence of “discret” objects converging to a “continuous”

object X:

Xn �!
n!1

X.

Several uses:y From the discrete to the continuous: if a certain property P is satisfied by

all the Xn and passes through the limit, X satisfies P.

y From the continuous to the discrete: if a certain property P is satisfied by

X and passes through the limit, Xn “roughly” satisfies P for n large.

y Universality: if (Yn)n>1 is another sequence of objects converging to X,

then Xn and Yn “roughly” have the same properties for n large.
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Random paths Random trees Random surfaces

What is it about?

Let (Xn)n>1 be a sequence of “discrete” objects converging to a “continuous”

object X:

Xn �!
n!1

X.

y In what space do the objects live?

Here, a metric space (E,d).y What is the sense of this convergence when these objects are random?
Here, convergence in distribution:

E [F(Xn)] �!
n!1

E [F(X)]

for every continuous bounded function F : E ! R.

Igor Kortchemski Large discrete random structures 3 / 672



Random paths Random trees Random surfaces

What is it about?

Let (Xn)n>1 be a sequence of “discrete” objects converging to a “continuous”

object X:

Xn �!
n!1

X.

y In what space do the objects live? Here, a metric space (E,d).

y What is the sense of this convergence when these objects are random?
Here, convergence in distribution:

E [F(Xn)] �!
n!1

E [F(X)]

for every continuous bounded function F : E ! R.

Igor Kortchemski Large discrete random structures 3 / 672



Random paths Random trees Random surfaces

What is it about?

Let (Xn)n>1 be a sequence of “discrete” objects converging to a “continuous”

object X:

Xn �!
n!1

X.

y In what space do the objects live? Here, a metric space (E,d).y What is the sense of this convergence when these objects are random?

Here, convergence in distribution:

E [F(Xn)] �!
n!1

E [F(X)]

for every continuous bounded function F : E ! R.

Igor Kortchemski Large discrete random structures 3 / 672



Random paths Random trees Random surfaces

What is it about?

Let (Xn)n>1 be a sequence of “discrete” objects converging to a “continuous”

object X:

Xn �!
n!1

X.

y In what space do the objects live? Here, a metric space (E,d).y What is the sense of this convergence when these objects are random?
Here, convergence in distribution:

E [F(Xn)] �!
n!1

E [F(X)]

for every continuous bounded function F : E ! R.

Igor Kortchemski Large discrete random structures 3 / 672



Random paths Random trees Random surfaces

Outline

I. Random paths (1951)

II. Random trees (1994)

III. Random surfaces (2004)
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Random paths Random trees Random surfaces

Theorem (Central limit theorem; De Moivre 1870, Lyapounov 1901)

Let (Xn)n>1 be a sequence of i.i.d. (independent and identically distributed)
random variables with E [X1] = 0 and �2 = E

⇥
X1

2
⇤
. Assume �2 2 (0,1).

Set
Sn = X1 + X2 + · · ·+ Xn. Then:

Sn
�
p
n

(d)�!
n!1

N(0, 1),

where N(0, 1) is a standard Gaussian random variable.

y Consequence: for every a < b,

P
✓
a <

Sn
�
p
n

< b

◆
�!
n!1

Z
b

a

dx
1p
2⇡

e-
x2

2 .
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Random paths Random trees Random surfaces

Brownian motion, limiting object
Let (Xn)n>1 be a sequence of i.i.d. random variables with E [X1] = 0 and

�2 = E
⇥
X1

2
⇤
< 1.

Set Sn = X1 +X2 + · · ·+Xn. For t > 0, define St by linear

interpolation. What does ( Snt

�
p
n
, 0 6 t 6 1) look like?

Theorem (Donsker, 1951)

We have the convergence in distribution
✓

Snt

�
p
n
, t > 0

◆
(d)�!

n!1
(Wt, t > 0),

in the space C([0, 1],R), where (Wt, t > 0) is a continuous function called
Brownian motion (independent of �).
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Here, E = C([0, 1],R) is the space of real-valued continuous functions on [0, 1]
equipped with the uniform norm.
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interpolation. What does ( Snt

�
p
n
, 0 6 t 6 1) look like?

Theorem (Donsker, 1951)
We have the convergence in distribution

✓
Snt

�
p
n
, t > 0

◆
(d)�!

n!1
(Wt, t > 0),

in the space C([0, 1],R), where (Wt, t > 0) is a continuous function called
Brownian motion (independent of �).

y Consequence: using the fact that sup : C([0, 1],R) ! R is continuous, we

get that for every a > 0,

P
✓
max06i6n Si

�
p
n

> a

◆
�!
n!1

P
✓

sup
06t61

Wt > a

◆

= 2

Z1

a

dx
1p
2⇡

e-
x2

2 .
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Random paths Random trees Random surfaces

Brownian motion

– 1827: Brown observes the disordered movement of pollen in water;

– 1905: Einstein proposes an explanation of this observation using the

concepts of atoms and molecules;

– 1908: Perrin experimentally confirmed the existence of atoms and

molecules (Nobel Prize 1926);

– 1923: Wiener gives a mathematical construction of Brownian motion.
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Brownian motion
– 1827: Brown observes the disordered movement of pollen in water;

– 1905: Einstein proposes an explanation of this observation using the

concepts of atoms and molecules;

– 1908: Perrin experimentally confirmed the existence of atoms and

molecules (Nobel Prize 1926);

– 1923: Wiener gives a mathematical construction of Brownian motion.

"This is a case where it’s really natural to think of those continuous functions

without derivatives that mathematicians have imagined, and which were wrongly

regarded as mere mathematical curiosities, since experience can suggest them."

– Jean Perrin
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Random paths Random trees Random surfaces

Theorem (conditioned Donsker, Kaigh ’75)
Let (Xn)n>1 be a sequence of i.i.d. random variables with E [X1] = 0 and
�2 = E

⇥
X1

2
⇤
< 1.

Let Sn = X1 + X2 + · · ·+ Xn. Then:
✓

Snt

�
p
n
, 0 6 t 6 1

����Sn = 0, Si > 0 for i < n

◆
(d)�!

n!1
( t, 0 6 t 6 1),

where ( t)06t61 is a random continuous function called Brownian excursion.

Igor Kortchemski Large discrete random structures 9 / 142



Random paths Random trees Random surfaces

Theorem (conditioned Donsker, Kaigh ’75)
Let (Xn)n>1 be a sequence of i.i.d. random variables with E [X1] = 0 and
�2 = E

⇥
X1

2
⇤
< 1. Let Sn = X1 + X2 + · · ·+ Xn.

Then:
✓

Snt

�
p
n
, 0 6 t 6 1

����Sn = 0, Si > 0 for i < n

◆
(d)�!

n!1
( t, 0 6 t 6 1),

where ( t)06t61 is a random continuous function called Brownian excursion.

Igor Kortchemski Large discrete random structures 9 / 142



Random paths Random trees Random surfaces

Theorem (conditioned Donsker, Kaigh ’75)
Let (Xn)n>1 be a sequence of i.i.d. random variables with E [X1] = 0 and
�2 = E

⇥
X1

2
⇤
< 1. Let Sn = X1 + X2 + · · ·+ Xn. Then:

✓
Snt

�
p
n
, 0 6 t 6 1

����Sn = 0, Si > 0 for i < n

◆
(d)�!

n!1

( t, 0 6 t 6 1),

where ( t)06t61 is a random continuous function called Brownian excursion.

Igor Kortchemski Large discrete random structures 9 / 142



Random paths Random trees Random surfaces

Theorem (conditioned Donsker, Kaigh ’75)
Let (Xn)n>1 be a sequence of i.i.d. random variables with E [X1] = 0 and
�2 = E

⇥
X1

2
⇤
< 1. Let Sn = X1 + X2 + · · ·+ Xn. Then:

✓
Snt

�
p
n
, 0 6 t 6 1

����Sn = 0, Si > 0 for i < n

◆
(d)�!

n!1
( t, 0 6 t 6 1),

where ( t)06t61 is a random continuous function called Brownian excursion.

Igor Kortchemski Large discrete random structures 9 / 142



Random paths Random trees Random surfaces

Theorem (conditioned Donsker, Kaigh ’75)
Let (Xn)n>1 be a sequence of i.i.d. random variables with E [X1] = 0 and
�2 = E

⇥
X1

2
⇤
< 1. Let Sn = X1 + X2 + · · ·+ Xn. Then:

✓
Snt

�
p
n
, 0 6 t 6 1

����Sn = 0, Si > 0 for i < n

◆
(d)�!

n!1
( t, 0 6 t 6 1),

where ( t)06t61 is a random continuous function called Brownian excursion.

Igor Kortchemski Large discrete random structures 9 / 142



Random paths Random trees Random surfaces

Theorem (conditioned Donsker, Kaigh ’75)
Let (Xn)n>1 be a sequence of i.i.d. random variables with E [X1] = 0 and
�2 = E

⇥
X1

2
⇤
< 1. Let Sn = X1 + X2 + · · ·+ Xn. Then:

✓
Snt

�
p
n
, 0 6 t 6 1

����Sn = 0, Si > 0 for i < n

◆
(d)�!

n!1
( t, 0 6 t 6 1),

where ( t)06t61 is a random continuous function called Brownian excursion.

Igor Kortchemski Large discrete random structures 9 / 142



Random paths Random trees Random surfaces

Theorem (conditioned Donsker, Kaigh ’75)
Let (Xn)n>1 be a sequence of i.i.d. random variables with E [X1] = 0 and
�2 = E

⇥
X1

2
⇤
< 1. Let Sn = X1 + X2 + · · ·+ Xn. Then:

✓
Snt

�
p
n
, 0 6 t 6 1

����Sn = 0, Si > 0 for i < n

◆
(d)�!

n!1
( t, 0 6 t 6 1),

where ( t)06t61 is a random continuous function called Brownian excursion.

The Brownian excursion can be seen as Brownian motion (Wt, 0 6 t 6 1)
conditioned by W1 = 0 and Wt > 0 for t 2 (0, 1).
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where ( t)06t61 is a random continuous function called Brownian excursion.

y Consequence: for every a > 0,

P
✓

sup
06t61

Snt

�
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> a

����Sn = 0, Si > 0 for i < n
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Random paths Random trees Random surfaces

I. Random paths (1951)

II. Random trees (1994)

III. Random surfaces (2004)
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Random paths Random trees Random surfaces

Random trees

Motivations:

y Computer Science: data structures, analysis of algorithms, networks, etc.

y Biology: genealogical and phylogenetical trees, etc.

y Combinatorics: trees are (sometimes) simpler to count, there are nice

bijections, etc.

y Probability: trees are building blocks of several models of random graphs,

having rich probabilistic properties.
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Random paths Random trees Random surfaces

Plane trees

Let Xn be the set of all plane trees with n vertices.

Figure: Two different plane trees

y Question: What does a large typical plane tree look like?
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Random paths Random trees Random surfaces

Let Tn be a uniform plane tree with n vertices chosen uniformly at random.y What is the order of magnitude of the diameter of Tn?

y wooclap.com ; code probability.
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What metric space for Tn?



Random paths Random trees Random surfaces

Coding a tree by its contour function
We code a tree ⌧ by its contour function C(⌧):
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Random paths Random trees Random surfaces

Coding a tree by its contour function

Knowing the contour function, it is easy to recover the tree:
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Random paths Random trees Random surfaces

Scaling limits
Let Tn be a uniform plane tree with n vertices chosen uniformly at random.

Theorem (Aldous ’93)

The convergence
✓

1p
2n

C2(n-1)t(Tn)

◆

06t61

(d)�!
n!1

( (t))06t61 ,

holds in distribution in the space C([0, 1],R) of continuous funtions [0, 1] ! R
equipped with the topology of uniform convergence, where is the normalized
Bronwian excursion.

Igor Kortchemski Large discrete random structures 17 / -i



Random paths Random trees Random surfaces

Scaling limits
Let Tn be a uniform plane tree with n vertices chosen uniformly at random.

Theorem (Aldous ’93)

The convergence

✓
1p
2n

C2(n-1)t(Tn)

◆

06t61

(d)�!
n!1

( (t))06t61 ,

holds in distribution in the space C([0, 1],R) of continuous funtions [0, 1] ! R
equipped with the topology of uniform convergence, where is the normalized
Bronwian excursion.

Igor Kortchemski Large discrete random structures 17 / -i



Random paths Random trees Random surfaces

Scaling limits
Let Tn be a uniform plane tree with n vertices chosen uniformly at random.

Theorem (Aldous ’93)

The convergence

✓
1p
2n

C2(n-1)t(Tn)

◆

06t61

(d)�!
n!1

( (t))06t61 ,

holds in distribution in the space C([0, 1],R) of continuous funtions [0, 1] ! R
equipped with the topology of uniform convergence, where is the normalized
Bronwian excursion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Igor Kortchemski Large discrete random structures 17 / -i



Random paths Random trees Random surfaces

Scaling limits
Let Tn be a uniform plane tree with n vertices chosen uniformly at random.

Theorem (Aldous ’93)
The convergence

✓
1p
2n

C2(n-1)t(Tn)

◆

06t61

(d)�!
n!1

( (t))06t61 ,

holds in distribution in the space C([0, 1],R) of continuous funtions [0, 1] ! R
equipped with the topology of uniform convergence, where is the normalized
Bronwian excursion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Igor Kortchemski Large discrete random structures 17 / -i



Random paths Random trees Random surfaces

Scaling limits
Let Tn be a uniform plane tree with n vertices chosen uniformly at random.

Theorem (Aldous ’93)
The convergence

✓
1p
2n

C2(n-1)t(Tn)

◆

06t61

(d)�!
n!1

( (t))06t61 ,

holds in distribution in the space C([0, 1],R) of continuous funtions [0, 1] ! R
equipped with the topology of uniform convergence, where is the normalized
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y Consequence: for every a > 0,

P
⇣
Height(Tn) > a ·

p
2n

⌘
�!
n!1

P (sup > a)

=
1X

k=1

(4k2a2 - 1)e-2k2
a

2
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Scaling limits
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The convergence
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holds in distribution in the space C([0, 1],R) of continuous funtions [0, 1] ! R
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y Extension to a more general class of random plane trees:

Bienaymé–Galton–Watson trees with critical finite variance offspring

distribution, conditioned on having a large number of vertices.
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y Extension to a more general class of random plane trees:

Bienaymé–Galton–Watson trees with critical finite variance offspring

distribution, conditioned on having a large number of vertices.
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(C0, . . . ,C2(n-1))
(d)
=

(S0, . . . ,S2(n-1)) under P( · · · |S2n-2 = 0, Si > 0 for i < 2n- 2)

where (Sk)k>0 is the random walk with jumps ±1 with probability 1/2.

y Extension to a more general class of random plane trees:

Bienaymé–Galton–Watson trees with critical finite variance offspring

distribution, conditioned on having a large number of vertices.
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y We get the desired result with the extension of Donsker’s theorem to the

conditioned case.

y Extension to a more general class of random plane trees:

Bienaymé–Galton–Watson trees with critical finite variance offspring

distribution, conditioned on having a large number of vertices.
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? Can we say that Tn, appropropriately rescaled, converges to a limiting

continuous random tree?

y Consequence 2 :

Yes, when we view Tn as a compact metric space by

equipping its vertices with the graph distance.
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Random paths Random trees Random surfaces

The Hausdorff distance

Let X, Y be two subsets of a same metric space Z.

If

Xr = {z 2 Z;d(z,X) 6 r}, Yr = {z 2 Z;d(z, Y) 6 r}

are the r-neighborhoods of X and Y, we set

dH(X, Y) = inf {r > 0;X ⇢ Yr and Y ⇢ Xr} .
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The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance between X and Y is the smallest Hausdorff

distance between all possible isometric embeddings of X and Y into a same
metric space Z.
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The Brownian tree
y Consequence of Aldous’ theorem (Duquesne, Le Gall): there exists a

random compact metric space T such that the convergence

1p
2n

· Tn

(d)�!
n!1

T ,

holds in distribution for the Gromov–Hausdorff distance.

The metric space T is called the Brownian random tree, and is coded by the

Brownian excursion.
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I. Random paths

II. Random trees

III. Random surfaces
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construct a random surface as a limit of random discrete surfaces.

Consider n triangles, and glue them uniformly at random along edges so that

one gets a surface homeomorphic to the sphere.
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Figure: A large random triangulation of the sphere.
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Figure: A large random triangulation of the sphere.

Let Tn be a triangulation of the sphere with n triangles chosen uniformly at

random.

y What is the order of magnitude of the diameter of Tn?

y wooclap.com ; code probability.
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The Brownian sphere

Problem (Schramm at ICM 2006): Let Tn be a random uniform triangulation of

the sphere with n triangles.

View Tn as a compact metric space, by equipping

its vertices with the graph distance. Show that n-1/4 · Tn converges to a

random compact metric space (the Brownian sphere), in distribution for the

Gromov–Hausdorff distance.

Solves by Le Gall in 2011.

Since, it has been shown that many other models of discrete random surfaces

converge to the Brownian sphere (Miermont, Beltran & Le Gall, Addario-Berry

& Albenque, Bettinelli & Jacob & Miermont, Abraham)

, by using various

techniques (in particular bijective codings by labeled trees)

y Motivations from theoretical physics (Liouville quantum gravity), links with

Gaussian multiplicative chaos.
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