
Chapter 0: basic discrete probability (warm-up)



Probability measures

Let Ω be a discrete (finite or countable set).

y Idea: Ω represents the set of all possible outcomes of a random experiment

With every y ∈ ω, y 7→ probability P(y) ∈ [0, 1] that y is the outcome of this
experiment.

Obviously,
∑
y∈Ω

P(y) = 1.

The function P is called a probability measure on Ω.
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Conditional probability

When A ⊂ Ω (we say that A is an event), the probability that A happens is

P(A) =
∑
y∈A

P(y)

(so P({y}) = P(y)).

When P(A) > 0: how things look when one has the knowledge that A actually
happens?

One defines an new probability measure PA:

PA(y) =
P(y)

P(A)
, y ∈ A; PA(y) = 0, y ̸∈ A,

called the conditional probability measure given A.
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Independance

Two events A and B are called independent when

P(A ∩ B) = P(A)P(B).

When P(A) > 0, this means PA(B) = P(B), i.e. the occurrence of A does not
influence the likelihood of B happening.

Example. Take Ω = {(i, j) : i ∈ {1, 2, . . . , 6}, j ∈ {1, 2, . . . , 6}} = {1, 2, . . . , 6}2.
Set

A = {(i, j) ∈ Ω : i ⩾ 4}, B = {(i, j) ∈ Ω : j = 6}.

Define P to assigne a probability 1/36 to every element of Ω.Then

P(A) =
18

36
=

1

2
, P(B) =

6

36
=

1

6
, P(A ∩ B) =

3

36
=

1

12
,

so A and B are independent.
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Random variables

When one has a discrete probability space, then a function X from Ω to R is
called a random variable.

y Interpretation: it is “a number that one can read as part of the outcome of
the experiment.”

The possible outcomes are made of the set X(Ω).

y Examples: X(i, j) = i, X(i, j) = j, X(i, j) = i+ j or X(i, j) = max(i, j) etc.

The law of a random variable X then describes the various probabilities of
occurrence of X. For x ∈ X(Ω) one has

P({y :∈ Ω : X(y) = x}) =
∑

y∈Ω:X(y)=x

P(y).

One often just writes P(X = x) or P({X = x}).
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Independent random variables
Two random variables X1 and X2 are independent if for every x1, x2:

P(X1 = x1 and X2 = x2) = P(X1 = x1)P(X2 = x2).

Here the left-hand side stands for

P({y ∈ Ω : X1(y) = x1 and X2(y) = x2} = P({X1 = x1} ∩ {X2 = x2}).

y This intuitively means that what X1 reveals has no influence on what X2

reveals.

Similarly, one says that k random variables X1, . . . ,Xk are independent if for all
x1, . . . , xk:

P(X1 = x1, . . . ,Xk = xk) = P(X1 = x1) · · ·P(Xk = xk).

This corresponds to the fact that X1, . . . ,Xk could be viewed as the outcomes
of totally independent experiments.
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Independent random variables

y In the example Ω = {(i, j) : i ∈ {1, 2, . . . , 6}, j ∈ {1, 2, . . . , 6}}, take
X1(i, j) = i and X2(i, j) = j.

Then for all (i, j) ∈ {1, 2, . . . , 6}2,

P(X1 = i,X2 = j) = P((i, j)) =
1

36
=

1

6
· 1
6
= P(X1 = i)P(X2 = j),

so X1 and X2 are independent.

This corresponds to the idea that one can view this as the throw of two
successive dices.

The previous events A = {(i, j) ∈ Ω : i ⩾ 4} and B = {(i, j) ∈ Ω : j = 6}
correspond to the fact that the outcome of the first one is greater or equal to 4
while the event B corresponds to the fact that the outcome of the second one is
a 6.
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Towards measure theory

y One has to be very careful if Ω is uncountable.

y This corresponds to many natural cases, for example the set Ω = {0, 1}1,2,...

made of infinite sequences of {0, 1}, which appears if we want to model an
infinite sequence of (independent) fair coin tosses.
y If one is not careful, one would for example write for every
(xi)i⩾1 ∈ {0, 1}1,2,...,

P(x1, x2, x3, . . .) =
1

2
· 1
2
· 1
2
· · · = 0

so
P(Ω) =

∑
(xi)i⩾1∈{0,1}1,2,...

P(x1, x2, x3, . . .) = 0,

which is absurd.
y Also, in general, it is not possible to define P(A) for every A ⊂ {0, 1}1,2,....
It will be possible only for special subsets which are “accessible” to
measurement: this is the motivation behind σ-fields.
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