Chapter 0: basic discrete probability (warm-up)

Probability measures

Let Ω be a discrete (finite or countable set).

Probability measures

Let Ω be a discrete (finite or countable set).
\uparrow Idea: Ω represents the set of all possible outcomes of a random experiment

Probability measures

Let Ω be a discrete (finite or countable set).
\checkmark Idea: Ω represents the set of all possible outcomes of a random experiment

With every $\mathrm{y} \in \omega, \mathrm{y} \mapsto$ probability $\mathrm{P}(\mathrm{y}) \in[0,1]$ that y is the outcome of this experiment.

Probability measures

Let Ω be a discrete (finite or countable set).
\checkmark Idea: Ω represents the set of all possible outcomes of a random experiment

With every $y \in \omega, y \mapsto$ probability $\mathrm{P}(\mathrm{y}) \in[0,1]$ that y is the outcome of this experiment.

Obviously, $\sum_{y \in \Omega} P(y)=1$.

Probability measures

Let Ω be a discrete (finite or countable set).
\checkmark Idea: Ω represents the set of all possible outcomes of a random experiment

With every $y \in \omega, y \mapsto$ probability $\mathrm{P}(\mathrm{y}) \in[0,1]$ that y is the outcome of this experiment.

Obviously, $\sum_{y \in \Omega} P(y)=1$.

The function P is called a probability measure on Ω.

Conditional probability

When $A \subset \Omega$ (we say that A is an event), the probability that A happens is

Conditional probability

When $A \subset \Omega$ (we say that A is an event), the probability that A happens is

$$
P(A)=\sum_{y \in A} P(y)
$$

(so $P(\{y\})=P(y))$.

Conditional probability

When $A \subset \Omega$ (we say that A is an event), the probability that A happens is

$$
P(A)=\sum_{y \in A} P(y)
$$

(so $P(\{y\})=P(y)$).
When $P(A)>0$: how things look when one has the knowledge that A actually happens?

Conditional probability

When $A \subset \Omega$ (we say that A is an event), the probability that A happens is

$$
P(A)=\sum_{y \in A} P(y)
$$

(so $P(\{y\})=P(y)$).
When $P(A)>0$: how things look when one has the knowledge that A actually happens?

One defines an new probability measure P_{A} :

Conditional probability

When $A \subset \Omega$ (we say that A is an event), the probability that A happens is

$$
P(A)=\sum_{y \in A} P(y)
$$

(so $P(\{y\})=P(y)$).
When $P(A)>0$: how things look when one has the knowledge that A actually happens?

One defines an new probability measure P_{A} :

$$
P_{A}(y)=\frac{P(y)}{P(A)}, \quad y \in A ; \quad P_{A}(y)=0, \quad y \notin A,
$$

Conditional probability

When $A \subset \Omega$ (we say that A is an event), the probability that A happens is

$$
P(A)=\sum_{y \in A} P(y)
$$

(so $P(\{y\})=P(y)$).
When $P(A)>0$: how things look when one has the knowledge that A actually happens?

One defines an new probability measure P_{A} :

$$
P_{A}(y)=\frac{P(y)}{P(A)}, \quad y \in A ; \quad P_{A}(y)=0, \quad y \notin A
$$

called the conditional probability measure given A.

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $\mathrm{P}(\mathrm{A})>0$, this means $\mathrm{P}_{\mathrm{A}}(\mathrm{B})=\mathrm{P}(\mathrm{B})$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$.

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(\mathfrak{i}, \mathfrak{j}): \mathfrak{i} \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\},
$$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\}, \quad B=\{(i, j) \in \Omega: j=6\} .
$$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\}, \quad B=\{(i, j) \in \Omega: j=6\} .
$$

Define P to assigne a probability $1 / 36$ to every element of Ω.

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\}, \quad B=\{(i, j) \in \Omega: j=6\} .
$$

Define P to assigne a probability $1 / 36$ to every element of Ω. Then

$$
P(A)=
$$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\}, \quad B=\{(i, j) \in \Omega: j=6\} .
$$

Define P to assigne a probability $1 / 36$ to every element of Ω. Then

$$
P(A)=\frac{18}{36}=\frac{1}{2}
$$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\}, \quad B=\{(i, j) \in \Omega: j=6\} .
$$

Define P to assigne a probability $1 / 36$ to every element of Ω. Then

$$
P(A)=\frac{18}{36}=\frac{1}{2}, \quad P(B)=
$$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\}, \quad B=\{(i, j) \in \Omega: j=6\} .
$$

Define P to assigne a probability $1 / 36$ to every element of Ω. Then

$$
P(A)=\frac{18}{36}=\frac{1}{2}, \quad P(B)=\frac{6}{36}=\frac{1}{6}
$$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\}, \quad B=\{(i, j) \in \Omega: j=6\} .
$$

Define P to assigne a probability $1 / 36$ to every element of Ω. Then

$$
P(A)=\frac{18}{36}=\frac{1}{2}, \quad P(B)=\frac{6}{36}=\frac{1}{6}, \quad P(A \cap B)=
$$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(\mathfrak{i}, \mathfrak{j}): \mathfrak{i} \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\}, \quad B=\{(i, j) \in \Omega: j=6\} .
$$

Define P to assigne a probability $1 / 36$ to every element of Ω. Then

$$
P(A)=\frac{18}{36}=\frac{1}{2}, \quad P(B)=\frac{6}{36}=\frac{1}{6}, \quad P(A \cap B)=\frac{3}{36}=\frac{1}{12},
$$

Independance

Two events A and B are called independent when

$$
P(A \cap B)=P(A) P(B) .
$$

When $P(A)>0$, this means $P_{A}(B)=P(B)$, i.e. the occurrence of A does not influence the likelihood of B happening.

Example. Take $\Omega=\{(\mathfrak{i}, \mathfrak{j}): \mathfrak{i} \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}=\{1,2, \ldots, 6\}^{2}$. Set

$$
A=\{(i, j) \in \Omega: i \geqslant 4\}, \quad B=\{(i, j) \in \Omega: j=6\} .
$$

Define P to assigne a probability $1 / 36$ to every element of Ω. Then

$$
P(A)=\frac{18}{36}=\frac{1}{2}, \quad P(B)=\frac{6}{36}=\frac{1}{6}, \quad P(A \cap B)=\frac{3}{36}=\frac{1}{12},
$$

so A and B are independent.

Random variables

When one has a discrete probability space, then a function X from Ω to \mathbb{R} is called a random variable.

Random variables

When one has a discrete probability space, then a function X from Ω to \mathbb{R} is called a random variable.
\diamond Interpretation: it is "a number that one can read as part of the outcome of the experiment."

Random variables

When one has a discrete probability space, then a function X from Ω to \mathbb{R} is called a random variable.
\checkmark Interpretation: it is "a number that one can read as part of the outcome of the experiment."

The possible outcomes are made of the set $X(\Omega)$.

Random variables

When one has a discrete probability space, then a function X from Ω to \mathbb{R} is called a random variable.
\checkmark Interpretation: it is "a number that one can read as part of the outcome of the experiment."

The possible outcomes are made of the set $X(\Omega)$.
\nrightarrow Examples: $X(i, j)=\mathfrak{i}, X(i, j)=\mathfrak{j}, X(i, j)=\mathfrak{i}+\mathfrak{j}$ or $X(i, j)=\max (i, \mathfrak{j})$ etc.

Random variables

When one has a discrete probability space, then a function X from Ω to \mathbb{R} is called a random variable.
\checkmark Interpretation: it is "a number that one can read as part of the outcome of the experiment."

The possible outcomes are made of the set $X(\Omega)$.
\nrightarrow Examples: $X(i, j)=\mathfrak{i}, X(i, j)=\mathfrak{j}, X(i, j)=\mathfrak{i}+\mathfrak{j}$ or $X(i, j)=\max (i, j)$ etc.
The law of a random variable X then describes the various probabilities of occurrence of X.

Random variables

When one has a discrete probability space, then a function X from Ω to \mathbb{R} is called a random variable.
\diamond Interpretation: it is "a number that one can read as part of the outcome of the experiment."

The possible outcomes are made of the set $X(\Omega)$.
\nrightarrow Examples: $X(i, j)=\mathfrak{i}, X(i, j)=\mathfrak{j}, X(i, j)=\mathfrak{i}+\mathfrak{j}$ or $X(i, j)=\max (i, j)$ etc.
The law of a random variable X then describes the various probabilities of occurrence of X. For $x \in X(\Omega)$ one has

$$
P(\{y: \in \Omega: X(y)=x\})=\sum_{y \in \Omega: X(y)=x} P(y) .
$$

Random variables

When one has a discrete probability space, then a function X from Ω to \mathbb{R} is called a random variable.
\diamond Interpretation: it is "a number that one can read as part of the outcome of the experiment."

The possible outcomes are made of the set $X(\Omega)$.
\nrightarrow Examples: $X(i, j)=\mathfrak{i}, X(i, j)=\mathfrak{j}, X(i, j)=\mathfrak{i}+\mathfrak{j}$ or $X(i, j)=\max (i, j)$ etc.
The law of a random variable X then describes the various probabilities of occurrence of X. For $x \in X(\Omega)$ one has

$$
P(\{y: \in \Omega: X(y)=x\})=\sum_{y \in \Omega: X(y)=x} P(y) .
$$

One often just writes $\mathrm{P}(\mathrm{X}=x)$ or $\mathrm{P}(\{\mathrm{X}=x\})$.

Independent random variables

Two random variables X_{1} and X_{2} are independent if for every $\mathrm{x}_{1}, \mathrm{x}_{2}$:

$$
\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1} \text { and } \mathrm{X}_{2}=\mathrm{x}_{2}\right)=\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}\right) \mathrm{P}\left(\mathrm{X}_{2}=\mathrm{x}_{2}\right) .
$$

Independent random variables

Two random variables X_{1} and X_{2} are independent if for every x_{1}, x_{2} :

$$
\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1} \text { and } \mathrm{X}_{2}=\mathrm{x}_{2}\right)=\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}\right) \mathrm{P}\left(\mathrm{X}_{2}=\mathrm{x}_{2}\right) .
$$

Here the left-hand side stands for

$$
\mathrm{P}\left(\left\{y \in \Omega: X_{1}(y)=x_{1} \text { and } X_{2}(y)=x_{2}\right\}\right.
$$

Independent random variables

Two random variables X_{1} and X_{2} are independent if for every x_{1}, x_{2} :

$$
\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1} \text { and } \mathrm{X}_{2}=\mathrm{x}_{2}\right)=\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}\right) \mathrm{P}\left(\mathrm{X}_{2}=\mathrm{x}_{2}\right) .
$$

Here the left-hand side stands for

$$
P\left(\left\{y \in \Omega: X_{1}(y)=x_{1} \text { and } X_{2}(y)=x_{2}\right\}=P\left(\left\{X_{1}=x_{1}\right\} \cap\left\{X_{2}=x_{2}\right\}\right) .\right.
$$

Independent random variables

Two random variables X_{1} and X_{2} are independent if for every x_{1}, x_{2} :

$$
\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1} \text { and } \mathrm{X}_{2}=\mathrm{x}_{2}\right)=\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}\right) \mathrm{P}\left(\mathrm{X}_{2}=\mathrm{x}_{2}\right) .
$$

Here the left-hand side stands for

$$
P\left(\left\{y \in \Omega: X_{1}(y)=x_{1} \text { and } X_{2}(y)=x_{2}\right\}=P\left(\left\{X_{1}=x_{1}\right\} \cap\left\{X_{2}=x_{2}\right\}\right) .\right.
$$

\diamond This intuitively means that what X_{1} reveals has no influence on what X_{2} reveals.

Independent random variables

Two random variables X_{1} and X_{2} are independent if for every x_{1}, x_{2} :

$$
\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1} \text { and } \mathrm{X}_{2}=\mathrm{x}_{2}\right)=\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}\right) \mathrm{P}\left(\mathrm{X}_{2}=\mathrm{x}_{2}\right) .
$$

Here the left-hand side stands for

$$
P\left(\left\{y \in \Omega: X_{1}(y)=x_{1} \text { and } X_{2}(y)=x_{2}\right\}=P\left(\left\{X_{1}=x_{1}\right\} \cap\left\{X_{2}=x_{2}\right\}\right) .\right.
$$

\checkmark This intuitively means that what X_{1} reveals has no influence on what X_{2} reveals.

Similarly, one says that k random variables X_{1}, \ldots, X_{k} are independent if for all $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$:

$$
P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\mathbb{P}\left(X_{1}=x_{1}\right) \cdots \mathbb{P}\left(X_{k}=x_{k}\right) .
$$

Independent random variables

Two random variables X_{1} and X_{2} are independent if for every x_{1}, x_{2} :

$$
\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1} \text { and } \mathrm{X}_{2}=\mathrm{x}_{2}\right)=\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}\right) \mathrm{P}\left(\mathrm{X}_{2}=\mathrm{x}_{2}\right) .
$$

Here the left-hand side stands for

$$
P\left(\left\{y \in \Omega: X_{1}(y)=x_{1} \text { and } X_{2}(y)=x_{2}\right\}=P\left(\left\{X_{1}=x_{1}\right\} \cap\left\{X_{2}=x_{2}\right\}\right) .\right.
$$

\checkmark This intuitively means that what X_{1} reveals has no influence on what X_{2} reveals.

Similarly, one says that k random variables X_{1}, \ldots, X_{k} are independent if for all χ_{1}, \ldots, x_{k} :

$$
P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\mathbb{P}\left(X_{1}=x_{1}\right) \cdots \mathbb{P}\left(X_{k}=x_{k}\right) .
$$

This corresponds to the fact that X_{1}, \ldots, X_{k} could be viewed as the outcomes of totally independent experiments.

Independent random variables

\nrightarrow In the example $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, j \in\{1,2, \ldots, 6\}\}$, take $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$.

Independent random variables

\leadsto In the example $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, j \in\{1,2, \ldots, 6\}\}$, take $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$.

Then for all $(i, j) \in\{1,2, \ldots, 6\}^{2}$,

Independent random variables

\leadsto In the example $\Omega=\{(\mathfrak{i}, \mathfrak{j}): \mathfrak{i} \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}$, take $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$.

Then for all $(\mathfrak{i}, \mathfrak{j}) \in\{1,2, \ldots, 6\}^{2}$,

$$
P\left(X_{1}=\mathfrak{i}, X_{2}=\mathfrak{j}\right)=P((i, j))
$$

Independent random variables

\leadsto In the example $\Omega=\{(\mathfrak{i}, \mathfrak{j}): \mathfrak{i} \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}$, take $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$.

Then for all $(\mathfrak{i}, \mathfrak{j}) \in\{1,2, \ldots, 6\}^{2}$,

$$
P\left(X_{1}=\mathfrak{i}, X_{2}=\mathfrak{j}\right)=P((i, j))=\frac{1}{36}
$$

Independent random variables

\leadsto In the example $\Omega=\{(\mathfrak{i}, \mathfrak{j}): \mathfrak{i} \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}$, take $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$.

Then for all $(\mathfrak{i}, \mathfrak{j}) \in\{1,2, \ldots, 6\}^{2}$,

$$
P\left(X_{1}=i, X_{2}=j\right)=P((i, j))=\frac{1}{36}=\frac{1}{6} \cdot \frac{1}{6}
$$

Independent random variables

\leadsto In the example $\Omega=\{(\mathfrak{i}, \mathfrak{j}): \mathfrak{i} \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}$, take $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$.

Then for all $(\mathfrak{i}, \mathfrak{j}) \in\{1,2, \ldots, 6\}^{2}$,

$$
P\left(X_{1}=\mathfrak{i}, X_{2}=\mathfrak{j}\right)=P((i, j))=\frac{1}{36}=\frac{1}{6} \cdot \frac{1}{6}=P\left(X_{1}=\mathfrak{i}\right) P\left(X_{2}=\mathfrak{j}\right),
$$

Independent random variables

\leadsto In the example $\Omega=\{(\mathfrak{i}, \mathfrak{j}): \mathfrak{i} \in\{1,2, \ldots, 6\}, \mathfrak{j} \in\{1,2, \ldots, 6\}\}$, take $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$.

Then for all $(i, j) \in\{1,2, \ldots, 6\}^{2}$,

$$
P\left(X_{1}=\mathfrak{i}, X_{2}=\mathfrak{j}\right)=P((i, j))=\frac{1}{36}=\frac{1}{6} \cdot \frac{1}{6}=P\left(X_{1}=\mathfrak{i}\right) P\left(X_{2}=\mathfrak{j}\right),
$$

so X_{1} and X_{2} are independent.

Independent random variables

\nrightarrow In the example $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, j \in\{1,2, \ldots, 6\}\}$, take $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$.

Then for all $(i, j) \in\{1,2, \ldots, 6\}^{2}$,

$$
P\left(X_{1}=\mathfrak{i}, X_{2}=\mathfrak{j}\right)=P((i, j))=\frac{1}{36}=\frac{1}{6} \cdot \frac{1}{6}=P\left(X_{1}=\mathfrak{i}\right) P\left(X_{2}=\mathfrak{j}\right),
$$

so X_{1} and X_{2} are independent.
This corresponds to the idea that one can view this as the throw of two successive dices.

Independent random variables

\nrightarrow In the example $\Omega=\{(i, j): i \in\{1,2, \ldots, 6\}, j \in\{1,2, \ldots, 6\}\}$, take $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$.

Then for all $(\mathfrak{i}, \mathfrak{j}) \in\{1,2, \ldots, 6\}^{2}$,

$$
P\left(X_{1}=\mathfrak{i}, X_{2}=\mathfrak{j}\right)=P((i, j))=\frac{1}{36}=\frac{1}{6} \cdot \frac{1}{6}=P\left(X_{1}=\mathfrak{i}\right) P\left(X_{2}=\mathfrak{j}\right),
$$

so X_{1} and X_{2} are independent.
This corresponds to the idea that one can view this as the throw of two successive dices.

The previous events $A=\{(i, j) \in \Omega: i \geqslant 4\}$ and $B=\{(i, j) \in \Omega: j=6\}$ correspond to the fact that the outcome of the first one is greater or equal to 4 while the event B corresponds to the fact that the outcome of the second one is a 6 .

Towards measure theory

$\xrightarrow{\wedge}$ One has to be very careful if Ω is uncountable.

Towards measure theory

\checkmark One has to be very careful if Ω is uncountable.
\diamond This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$

Towards measure theory

\checkmark One has to be very careful if Ω is uncountable.
\checkmark This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.

Towards measure theory

$\wedge \rightarrow$ One has to be very careful if Ω is uncountable.
\leadsto This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.
\checkmark If one is not careful, one would for example write for every $\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}$,

$$
\mathbb{P}\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

Towards measure theory

$\wedge \rightarrow$ One has to be very careful if Ω is uncountable.
\leadsto This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.
\checkmark If one is not careful, one would for example write for every $\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}$,

$$
\mathbb{P}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots
$$

Towards measure theory

$\wedge \rightarrow$ One has to be very careful if Ω is uncountable.
\leadsto This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.
\checkmark If one is not careful, one would for example write for every $\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}$,

$$
\mathbb{P}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots=0
$$

Towards measure theory

$\wedge \rightarrow$ One has to be very careful if Ω is uncountable.
\leadsto This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.
\checkmark If one is not careful, one would for example write for every $\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}$,

$$
\mathbb{P}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots=0
$$

so

$$
P(\Omega)
$$

Towards measure theory

$\wedge \rightarrow$ One has to be very careful if Ω is uncountable.
\leadsto This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.
\checkmark If one is not careful, one would for example write for every $\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}$,

$$
\mathbb{P}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots=0
$$

SO

$$
P(\Omega)=\sum_{\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2 \ldots}} P\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

Towards measure theory

$\wedge \rightarrow$ One has to be very careful if Ω is uncountable.
\leadsto This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.
\checkmark If one is not careful, one would for example write for every $\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}$,

$$
\mathbb{P}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots=0
$$

SO

$$
P(\Omega)=\sum_{\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2 \ldots}} P\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0,
$$

Towards measure theory

$\wedge \rightarrow$ One has to be very careful if Ω is uncountable.
\leadsto This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.
\checkmark If one is not careful, one would for example write for every $\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}$,

$$
\mathbb{P}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots=0
$$

so

$$
P(\Omega)=\sum_{\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}} P\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0,
$$

which is absurd.
\leadsto Also, in general, it is not possible to define $P(A)$ for every $A \subset\{0,1\}^{1,2, \ldots}$.

Towards measure theory

\checkmark One has to be very careful if Ω is uncountable.
\leadsto This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.
$\diamond \rightarrow$ If one is not careful, one would for example write for every $\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}$,

$$
\mathbb{P}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots=0
$$

so

$$
P(\Omega)=\sum_{\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}} P\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0,
$$

which is absurd.
\diamond Also, in general, it is not possible to define $P(A)$ for every $A \subset\{0,1\}^{1,2, \ldots}$. It will be possible only for special subsets which are "accessible" to measurement

Towards measure theory

\checkmark One has to be very careful if Ω is uncountable.
\leadsto This corresponds to many natural cases, for example the set $\Omega=\{0,1\}^{1,2, \ldots}$ made of infinite sequences of $\{0,1\}$, which appears if we want to model an infinite sequence of (independent) fair coin tosses.
$\diamond \rightarrow$ If one is not careful, one would for example write for every $\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}$,

$$
\mathbb{P}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots=0
$$

so

$$
P(\Omega)=\sum_{\left(x_{i}\right)_{i \geqslant 1} \in\{0,1\}^{1,2, \ldots}} P\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0
$$

which is absurd.
\checkmark Also, in general, it is not possible to define $P(A)$ for every $A \subset\{0,1\}^{1,2, \ldots}$. It will be possible only for special subsets which are "accessible" to measurement: this is the motivation behind σ-fields.

