Chapter 2:
variables
Outline 1) Measurable functions
2) Product σ-fields and families of functions
3) Independent random variables
4) Real-valued random variables
5) Integration
6) Classical laws
7) Integration and independence

1) Measurable functions

Definition let $(E, \varepsilon)_{\text {and }}(F, F)$ be measurable spaces. A function $f:(E, \varepsilon) \rightarrow(F, \mathbb{E})$ is measurable if $\forall B \in \approx, g^{-1}(B) \in \varepsilon$.

Remains: Since $(f \circ g)^{-1}(B)=g^{-1}\left(\delta^{-1}(B)\right)$, a composition of mecornuble functions is measurable - If ε^{\prime} is a a -field with $\varepsilon \subset \varepsilon^{\prime}$, is $f:(E, \varepsilon) \rightarrow(F, R)$ is mearmatle, then $f:\left(E, \varepsilon^{\prime}\right) \rightarrow\left(F, M^{\prime}\right)$ is measmable

Criterion T_{0} check that $f_{:}(E, \delta) \rightarrow(F, B)$ is mecesunchbe, one often find a class $b C \mathcal{N}^{2}$ such that $\mathcal{N}^{\approx}=\sigma(b)$ and $\forall B \in b, f^{-1}(B) \in \varepsilon$.
Indeed, $\left\{B \in \approx ; S^{-1}(B) \in \varepsilon\right\}$ is then a σ-field (exercises containing b and thus containing $\sigma(b)=R$.
Interpretation in probability. A measurable function $X:(\Omega,() \rightarrow(F, F)$ is called a random variable (r.v. in short). Intuitively, this means that $X(\omega)$ is "observable" in the sense ore can "obsave' whettre $X(\omega) \in B$ with $B \in R^{N}$ or not.

Definition Let $f:(F, \varepsilon) \rightarrow(F, F)$ be a measurable function and let μ be a measure on (E, ε). Then, $\forall B \in F, \mu_{g}(B)=\mu\left(f^{-1}(B)\right)$ defines a measure on (F, F), called the image measure of f by μ.
In probability, is $X:(\Omega, \varepsilon) \rightarrow(F, \pi)$ is a rundown variable and IP a probability measme on (Ω, ε), then D_{X}, the image measure of B by X is called the lan of X.
By definition, $\forall B \in \mathcal{R}$,

$$
\begin{aligned}
P_{x}(B)=\mathbb{P}\left(X^{-1}(B)\right) & =\mathbb{P}(\{\omega \in \Omega ; x(\omega) \in B\}) \\
& =\mathbb{D}(X \in B)
\end{aligned}
$$

probabilistic notation (avoiding writing " w ")
Side remark If (E, ε, μ) is a probability space, there exists a random variable with law μ : just take $(\Omega, \tau, \boxtimes)=(E, \varepsilon, \mu)$ and $x: \Omega_{x_{n x} \in \mathbb{E}}$ the identity END OF LECTURE 4

How can one characterize a probability measure? In other words, is their a "simple" way to check if $\mathbb{P}_{x}=\mathbb{B}_{y}$? (ie $\mathbb{B}_{x}(A)=\mathbb{B}_{y}(A) \forall A \in R$)

If X tabes it values in a countable space $(E, P(E)$), then its law is characterized by the values $B_{x}\left(x_{x} x\right)=B_{x}(x)=P(x=x)$ for $x \in E$, since for $A C E, B_{x}(A)=\sum_{x \in A} B_{x}(x)$
In particular, $\mathbb{P}(X=x)=\mathbb{P}(y=x) \quad \forall x \in E \Rightarrow \mathbb{B}_{x}=\mathbb{B}_{y}$.
When E is uncountable, this is not true anymore and things can be very complicated!

In the cone of R, aunulative distribution functions are useful:
Definition The cumulative distribution fonction (af) of a real valued $r v x$ is the function $F_{x}: R \rightarrow[0, v$ defined by $\left.F_{X}(x)=\mathbb{B}(X \leqslant x)=\mathbb{P}_{X}(3-\infty, x]\right)$ for $x \in \mathbb{R}$

Example (Bernoulli random variable) If $B(x=0)=\frac{1}{4}$ and $B(x=1)=\frac{3}{4}$,

Example (Uniform distribution) If the law of X is the lebesgue mecesure on $[0,1]$:

Proposition
(1) Let X be a R-valued r.v. F_{x} is non-decreasing, $\lim _{-\infty} F_{x}=0, \lim _{+\infty} F_{x}=1, F_{x}$ is right-contimous
(2) If x, y ore two R-valued riv, $F_{x}=F_{y} \Leftrightarrow P_{x}=P_{y}$ (caff'scheracterize lavs)
(3) [lebesque-Stielfics] If a function $F: R \rightarrow[0,1]$ satififies the condition in (1), then there exists recel-valued riv. with $F=F_{X}$.
Proof: (1). Since $3-\infty, x]<]-\infty, y]$ for $x \leq y$, we get $\left.\left.\left.F_{x}(x)=P_{x}(3-\infty, x]\right) \leq \mathbb{P}_{x}(]-\infty, y\right]\right)=F_{x}(y)$, so F_{x} is non-deneaning

- Sine $\left.\left.\left.\bigcap_{R=1}^{n}\right]-\infty,-n\right]=3-\infty,-n\right]$ is decreasing in n, we get $\left.F_{x}(-n) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{B}_{x}\left(\bigcap_{R=1}^{\infty}\right]-\infty,-k I\right)=\mathbb{B}_{x}(\phi)=0$

Similar l $\left.\left.\bigcup_{k=1}^{n} J-\infty, k\right]=J-\infty, n\right]$ is increaring in n, so $F_{x}(n) \underset{n \rightarrow \infty}{\longrightarrow} B_{x}\left(\bigcup_{n=1}^{\infty} J-\infty, k J\right)=\mathbb{P}_{x}(\mathbb{R})=1$.

- Toke $x \in \mathbb{R}$. Since $\left.\bigcap_{R=1}^{n}\right]-\infty, x+\frac{1}{R}[$ is decreasing in n, we get

$$
F_{x}\left(x+\frac{1}{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{B}_{x}\left(\bigcap_{k=1}^{R=1} J-\infty, x+\frac{1}{R}[)=\mathbb{P}_{x}(3-\infty, x]\right)=F_{x}(x)
$$

(2). If $P_{x}=P_{y}$, the $\left.V_{x} \in R_{1}, P_{x}(3-\infty, x]\right)=P_{y}(3-\infty, x 3)$

- If $F_{x}=F_{y}$, then the probability measures B_{x} and B_{y} coincide on $\{3-\infty, x\}, x \in \mathbb{R}\}$, which is a generating π-system of $B(\mathbb{R})$
B_{y} the result of lective 3, we conduce that $P_{X}=\mathbb{P}_{y}$.
(3) Tabs $\Omega=30,1[, t=8(30,1 \tau)$, λ Lebesgue measure on $30,1[$. For $\omega \in] 0,1[$ set $X(\omega)=\inf \{t \in \mathbb{R}: F(t) \geqslant \omega\}$ (called the right-contiwous inverse of F). One cheds that X is measurable and that $X(\omega) \leqslant x \Leftrightarrow \omega \leqslant F(x) \quad$ for $\omega \in \Omega$ and $x \in \mathbb{R}$ Thee $\mathbb{P}(X \leqslant x)=\mathbb{P}(\{\omega \in \Omega: \omega \leq F(x))=F(x)$.

Notation If (F, F) is a measurable space, E_{a} set and $f: E \rightarrow F_{\text {a }}$ frenction, we define $\sigma(f)=\left\{f^{-1}(B): B \in F\right\}$ is a σ-field on E called the σ-field generated by $\&$. More generally, if (fili:E is a collection of functions with $f_{i}: E \rightarrow F_{i}$ and $\left(F_{i}, F_{i}\right)$ weomuatle space We define $\sigma\left(f_{i}, i \in I\right)=\sigma\left(\left\{f_{i}^{-1}\left(B_{i}\right): i \in I, B_{i} \in F_{i}\right\}\right)$, called the σ-field generated by $\left(f_{i}\right)_{i \in I}$

Remark I_{n} general, $\sigma\left(f_{i}: i \in I\right) \neq \bigcap_{i \in I} \sigma\left(f_{i}\right)$: we have $\sigma\left(f_{i} i \in I\right)=\sigma\left(\bigcup_{i \in I} \sigma\left(f_{i}\right)\right)$ (see exercise sheet) Example: If $f: \mathbb{R} \rightarrow \mathbb{R}, ~$ then $\sigma(g)=\{A \in 8(\mathbb{R}): A=-A\}$
Interpretation in probability

- $\sigma(X)$ represents the "information"/ "observable sets" ove has access to by looking at the values of X. - Similarly, if $\left(X_{i}\right)_{i \in I}$ are $r \cdot v, \sigma\left(X_{i}, i \in I\right)$ represents the "information" given by $\left(X_{i}\right)_{i \in I}$

Proposition (1) Let f: $B \rightarrow(F, \pi)$ be a function. Then $\sigma(8)$ is the smallest o- field on E for which f is measuacable
(2) Let $f_{i}: E \rightarrow\left(F_{i}, f_{i}\right)$ foriti be functions. Then $\sigma\left(f_{i}: i \in I\right)$ is

Proof (1) .First $f:(E, \sigma(\delta)) \rightarrow(F, \mathcal{R})$ is measurable by definition of $\circ(f)$

- If $f:(E, \varepsilon) \rightarrow(F, R)$ we show that $\sigma(8) \subset \varepsilon$. To the end, by mecosuability of f, $\forall B \in K, \delta^{-1}(B) \in \varepsilon$, so $\sigma(8) C E$ by definition of $\sigma(8)$
(2) The proof is similar. First, foritI $\left.f_{i}=\left(E, \sigma / f_{i i} i \in I\right)\right) \rightarrow\left(F_{i}, R_{i}\right)$ is measurable be cure for every $B_{i} \in \Lambda_{i}^{N}, f_{i}^{-1}\left(B_{i}\right) \in \sigma\left(f_{i} i \in I\right)$ by definition of $o\left(f_{i}: i \in I\right)$
- If $f_{i}(E, \varepsilon) \rightarrow\left(F_{i}, \tilde{r}_{i}\right)$ is measuable bi $\in I$ we s how that $o(f: i \in I) \subset \varepsilon$. T_{0} this end, by measuabalility of si $\forall B_{i} \in \mathcal{F i}_{i} \quad f_{i}^{-1}\left(B_{i}\right) \in \varepsilon$. Thee ε contains all sets of He form $f_{i}^{-1}\left(\theta_{i}\right)$ with $i \in I, B_{i} \in R_{i}$ so it also contains the o-fild they generate, which is precisely o(fi:iEI).
If E is a metric spec, recall that $B(\mathbb{E})$ is the Bard o-algetore, generated by all open sets of E.

Proposition LeA E, F be metric spaces and $f:(E, B(E)) \rightarrow(F, B(F))$ continuous. Then f is measurable.
Proel: $\forall o \in g(F)$, if O is open, $f^{-1}(0)$ is open, hence is in $B(E)$. Since $B(F)=\sigma$ (open sets of $F 1$, this shows that $f^{-1}(B) \in P(E)$ for every $B \in B(F)$.
2) Product σ-fields and families of functions

Product σ-fields are needed when couridening pairs, ormore generally families, of random vavables
Definition (product σ.field) Let $\left(E_{i}, \varepsilon_{i}\right)_{i \in I}$ be measurable spaces. Set $E=\prod_{i \in \pm} E_{i}$ and far $i \in I$, edit $T_{i} i E \rightarrow E_{i}$ be the canonical projections.
We let $\bigotimes_{i \in I}^{\otimes} \varepsilon_{i}:=\sigma\left(\pi_{i}, i \in I\right)=\sigma\left(\pi_{i}^{-1}\left(B_{i}\right) ; B_{i} \in \varepsilon_{i} j_{0} \cdots I\right)$ be the smallest σ-field on E such that all the porgechion are measurable. If is called the product o-field or cylinder o-f-ild.
Definition (cylinder sets) Sets of the form

$$
\pi_{i_{1}}^{-1}\left(A_{1}\right) \cap \cdots \cap \pi_{i_{n}}^{-1}\left(A_{n}\right)
$$

with $i_{1}, \ldots, i_{n} \in I, A_{2} \in \varepsilon_{i,}, \ldots, A_{n}^{i_{n}} \in \varepsilon_{i_{n}}$
are called cylinder sets (they farm a generating π-system of the producto-fidd)

$\left\{f:[a, 1] \rightarrow \mathbb{T},-1<g\left(\frac{1}{2}\right) \leq 1\right.$ and $\left.f(1)>\sqrt{2}\right\}$
$=\prod_{\frac{1}{2}}^{-1}\left(J-1,1[) \cap \prod_{1}^{-1}(J \sqrt{2}, \infty t) \wedge s\right.$ a cylinder set
$0,1\}_{\text {is }}^{\{\leq, \cdots\}}$ the cylinder σ-field seen in lecture 2

- If $I=\{1,2,-\}, E_{i}=\left\{0, B\right.$, the product σ-field on $\prod_{i \in I} E_{i}=\{0,1\}$ is the cylinder σ-field seen in lecture 2

Proposition If $\# I=n, \bigotimes_{i=1}^{h} \varepsilon_{i}=\sigma\left(A, \times \cdots \times A_{n}: A_{i} \in \varepsilon_{i}\right.$ fo a $\left.1 s \mid \leq n\right)$
Proof: Set $\varepsilon=\sigma\left(A_{1} \times \cdots \times A_{n} i A_{i} \in \varepsilon_{i}\right.$ for $\left.1 \leq: s, n\right)$

- $\prod_{i}:(E, \varepsilon) \rightarrow \varepsilon_{i}$ is measurable beaune

$$
\pi_{i}^{-1}\left(B_{i}\right)=E_{1} \times \cdots \times E_{i-1} \times B_{i} \times F_{i+1} \times \ldots \times E_{n} \in \varepsilon
$$

- if π_{i} is measurable \forall_{i}, then $A_{1} \times \cdots A_{n}=\pi_{1}^{-1}\left(A_{1}\right) \cap \cap \pi_{n}^{-1}\left(A_{n}\right)$ Hence $\mathcal{A} i$ s the smallest σ-algebra s. $\left(\forall i, \pi_{i}\right.$ is measurable

END OF LECTURES
WARNNG: It is not true in general that $₫ \in \varepsilon_{i}=\sigma\left(\prod_{i \in I} A_{i}: A_{i} \in \varepsilon_{i}\right)$ (it is true when I is constable, but not in geveree) Remark If b_{i} is a generating π-system of ε_{x}, then
$\left\{A_{1} \times \cdots \times A_{n}: A_{i} \in b_{i}\right\}$ is a generating π-system of $\varepsilon_{1} \otimes \cdots \otimes \varepsilon_{n}$

- When $\# I=n, P_{1} \otimes \cdots \otimes P_{n}$ is the unique probability measure on $\left(r_{1}, \cdots \cdots F_{n}, \varepsilon \in \cdots \otimes_{n}\right)$ such that $\mathbb{P}_{1} \otimes \cdots \otimes \mathbb{P}_{r}\left(A_{1} \times \cdots \times A_{n}\right)=\mathbb{P}_{1}\left(A_{1}\right) \mathbb{D}_{2}\left(A_{2}\right) \cdots \mathbb{P}_{n}\left(A_{n}\right)$ for $A_{r} \in \varepsilon_{i}$.
(uniqueness comes fran the fact that 2 probabilitymeasues that coincide on a generating π-system are equal existence is admitted it involves additional hols from neasue try)
The definition extends to O-finite measues such os the lees que measure (μ is o-finte on E if ore can write $E=\mathcal{U}_{n=1} E_{n}$ with $\mu\left(E_{N}\right)<\infty$)
Example The Lebesgue measure on \mathbb{R}^{n} is the product $\lambda \otimes \cdots \otimes \lambda$ with λ the Lebesgue wearue on \mathbb{R}.
Remark When one consider a family of suendan variables, then law is a probability measure on a product space. For example, $\mathbb{P}_{\mathcal{M}}(x y \leqslant 1)=\mathbb{T}_{(x, y)}\left(\left\{(x, y) \in \mathbb{R}^{2}: x y \leq 1\right\}\right)=P_{x y}(J-\infty, 17)$.
More generally, if $\left(x_{1}, \ldots, x_{n}\right)$ is a random variable with values in $\left(E_{1}, \ldots, E_{n}\right)$ its lan $\mathbb{S}_{\left(x_{1}, \ldots, x_{n}\right)}$ is characterized by $\mathbb{S}_{\left(x_{1}, \ldots, x_{n}\right)}\left(A_{1}, \ldots x A_{n}\right)=\mathbb{P}\left(\left(x_{1}, \ldots, x_{n}\right) \in A_{1} \times \ldots \times A_{n}\right)$

$$
\begin{equation*}
=\mathbb{B}\left(x_{1} \in A_{1}, \cdots, x_{n} \in A_{n}\right) \tag{6}
\end{equation*}
$$

Proposition（1）L d $\left(E_{i}, \varepsilon_{i}\right)_{i \in I}$ be a family of measurable spaces． A function $f:(E, \varepsilon) \longrightarrow\left(\prod_{i \in I} E_{i}, \not \bigotimes_{i \in I} \varepsilon_{i}\right)$ is measurable iff

（2）If fig：$(B, B(B)) \rightarrow(B, B(B))$ are mecosurable， $f+g, f \times g, \min (f, g), \max (f, g)$ are meaxuble

Then if $\left(X_{i}\right)_{i \in I}$ is a collection of random raciables，one may view $\left(X_{i}\right)_{i \in I}$ as $O N E$ random variable
Proof：（1）\Rightarrow If frs measurable，$\forall i \in I \pi_{i}$ of is a composition of measure be function，so it is measurable．
\Leftrightarrow Since $\otimes \varepsilon_{i}=\sigma\left(\pi_{i}^{-1}\left(B_{i}\right): B_{i} \in \varepsilon_{i}, i \in I\right)$ ，it suffices to chicle that $g^{-1}\left(\pi_{i}^{-1}\left(B_{i}\right)\right)^{i} \in \varepsilon$ for every $i \in I$ and $B_{i} \in \varepsilon_{i}$ ．
But $\delta^{-1}\left(\pi_{i}^{-1}\left(B_{i}\right)\right)=\left(\pi_{i} \circ \delta\right)^{-1}\left(B_{i}\right) \in \xi_{i}$ became $\pi_{i} \circ \circ$ is measurable $\begin{aligned} & \text { But }\left(\mathbb{R}^{2}, B\left(\mathbb{R}^{2}\right)\right) \longrightarrow \mathbb{R} \\ &(\mu, v)\end{aligned}$ is continues，hence measuchle

Since $B\left(B^{2}\right)=B(B) \otimes B(B)$（See exercise sheet），we conclude by corngosition that $f+g$ is meanubbl．The reasoning is the same for the other functions
3）Independent random variables
For a function $X: \Omega \rightarrow(\mathbb{E}, \varepsilon)$ recall that $\sigma(x)=\left\{X^{-1}(A): A \in \varepsilon\right\}$
Definition（ \Perp of a finite number of Ω random variables）
Random variables x_{1}, \ldots, x_{n} are inge pendent（notation：$⿻ 上 丨 匕$ ）if the σ ．fields $\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)$ are independent．

Demark By the definition of independence, if $X_{i}:(r, p) \rightarrow\left(E_{i}, \varepsilon_{i}\right)$ are random variables, x_{1}, \ldots, x_{n} are $\perp \Leftrightarrow \forall A, \in \varepsilon_{1}, \ldots, \forall A_{n} \in \varepsilon_{n}, \quad B\left(X_{1}^{-1}\left(A_{1}\right) \cap \ldots \cap x_{n}^{-1}\left(A_{n}\right)\right)=P\left(X_{1}^{-1}\left(A_{1}\right)\right) \ldots B\left(x_{n}^{-1}\left(A_{n}\right)\right)$

$$
\begin{aligned}
& \Leftrightarrow \forall A_{1} \in \varepsilon_{1}, A_{n} \in \varepsilon_{n} B\left(x_{1} \in A_{1}, \ldots, x_{n} \in A_{n}\right)=\mathbb{P}\left(x_{1} \in A_{1}\right) \cdots P\left(x_{n} \in A_{n}\right) \\
& \Leftrightarrow \forall A_{1} \in \varepsilon_{1}, A_{n} \in \varepsilon_{n} B_{\left(x_{1}, \ldots, x_{n}\right)}\left(A_{1}, \cdots A_{n}\right)=D_{x_{1}}\left(A_{1}\right) \cdots B_{x_{n}}\left(A_{n}\right) \\
& \Leftrightarrow B_{\left(x_{1}, \ldots, x_{n}\right)}=D_{x_{1}} \otimes \cdots \otimes P_{x_{n}}
\end{aligned}
$$

The lest \Leftrightarrow comes from the fact that k wo probability vecosues ore equal its they are equal on a generating T-system.
Remark To show that X_{1}, \ldots, X_{n} are 11 one very of rem shows that $\mathbb{B}\left(x_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=\mathbb{P}\left(X_{1} \in A_{1}\right) \cdots \mathbb{P}\left(X_{n} \in A_{n}\right) \quad(\mathscr{)}$
for every $A_{1} \in b_{1}, \ldots, A_{n} \in b_{n}$ with b_{i} a generatingusystien of ε_{i} with $\Omega \in b_{i}$ (thanks to the property seen at the end of Chapter 1)
Proposition
(1) If $X_{1} \cdots x_{n}$ are \mathbb{Z}-valued r.v, they are \mathbb{H} iff $\forall x_{1} \ldots, i n \in \mathbb{Z}$,

$$
P\left(X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)=B\left(X_{1}=i_{1}\right) \cdots P\left(X_{n}=i_{n}\right)
$$

(2) If X_{11}, \ldots, X_{n} are \mathbb{R}-valued $r \cdot v$, they we \Perp if $\forall x_{1}, \ldots, x_{n} \in R$, $\mathbb{B}\left(X_{2} \leqslant x_{1}, \ldots, X_{n} \leqslant x_{n}\right)=\mathbb{B}\left(X_{1} \leq x_{1}\right) \ldots \mathbb{B}\left(X_{n} \leq x_{n}\right)$

Proof: $\|$) T abe $\{\mathbb{Z}\} \cup\{\{i\}: i \in \mathbb{Z}\}$, generating π-system of \mathbb{Z}. To see that (\forall) holds with $A_{R}=\mathbb{Z}$, just sum oven all $i_{R} \in \mathbb{Z}$ (for example, for $n=3, B\left(X_{1}=i_{1}, x_{2}=i_{2}\right)=\sum_{i_{3} \in \mathbb{Z}} P\left(X_{1}=i_{1}, X_{2}=i_{2}, x_{3}=i_{3}\right)$)
(2) Tale $\{\mathbb{R}\} \cup\}-\infty, x]: x \in \mathbb{R}\}$, generating π-system of \mathbb{R}. To see that (x) holds with $A_{n}=\mathbb{R}$, just make $x_{k} \rightarrow \infty$.

Definition let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a randan variable in $E_{1} \times \ldots E_{n}$. The lan $\beta_{x_{i}}$ of X_{1} is called a marginal law. The law of $\left(X_{1, \ldots,} X_{n}\right)$ is called the joint law.
Demark Since $T_{\left(x_{1}, \cdots, x_{n}\right)}\left(E_{1} \times \cdots \times E_{i-1} \times A_{i} \times E_{i+1} \times \cdots \times E_{n}\right)=\mathbb{P}_{x}\left(A_{i}\right)$, the marginal leans are determined by the joint lan $J_{\left(x_{1}, \ldots, x_{n}\right) \text {. The converse }}$ is false in general, but l es line far independent random variables by (A)

Lemma (Composition principle) Let $\left(x_{i}\right)_{1 \leq i \leq n}$ be random variables with $x_{i} i \Omega \rightarrow E_{i}$ Let $\delta_{i}: E_{i} \rightarrow F_{i}$ be measurable. Assume that $\left(X_{i}\right)_{1 \leq i \leq n}$ are V.
Then $\left(f i\left(X_{i}\right)\right)_{1 \leq i \leq n}$ are VI
Proof: This follows from the fact that $\sigma\left(f_{i}\left(x_{i}\right)\right) \subset \sigma_{-1}\left(x_{i}\right)$.
Indeed, take $A \in \sigma\left(f_{i}\left(x_{i}\right)\right)$. Then $\exists B \in r_{i}$ with $A=\left(f: 0 x_{i}\right)^{-1}(B)=x_{i}^{-1}\left(g_{i}^{-1}(B)\right)$ Since g_{i} is mecesurable, $f_{i}^{-1}(B) \in \varepsilon_{i}$, so $A \in \sigma\left(X_{i}\right)$.

Definition (independence for any family of reendom variables)
If $\left(X_{i}\right)_{i \in I}$ are random variables, they are independent (notation: V) if $\forall T< \pm, \operatorname{cond}(\rho)<+\infty, \quad\left(x_{j}\right)_{j \in \mathcal{T}}$ are independent.

Led us give two useful results involving infrike families countable for the first one, uncountable for the second one).

Lemme Let $\left(x_{i}\right)_{i \geqslant 1}$ be II. Fix $p \geqslant 1$. Set $B_{2}=\sigma\left(x_{1}, \ldots, x_{p}\right)$ and $B_{2}=\sigma\left(X_{k}: k \geqslant p+1\right)$
Then $B_{1} \Perp B_{2}$
Proof: We apply the preurous proposition of hectare 4 with $b_{1}=\sigma\left(x_{1}, \ldots, x_{p}\right)$ and $b_{2}=\bigcup_{k=p+1}^{\infty} \sigma\left(x_{p+1}, \ldots, x_{k}\right)$
Indeed, $\sigma\left(b_{1}\right)=B_{1}, \sigma\left(l_{2}\right)=B_{2}$ (fereraice) b_{1} and l_{2} are π-systems such that $\forall A \subset b_{1}, \forall B \subset b_{2}, \mathbb{P}(A \cap B)=\mathbb{T}(A) \mathbb{S}(B)$
Indeed, we have $\sigma\left(X_{1, \ldots}, X_{p}\right) \Perp \sigma\left(X_{p+1, \ldots,} X_{k}\right)$ by the coalition principle for independent or fields.

Remade The coalition principle for $\mathbb{\Perp} \sigma$-fields shows that if $\left(x_{i}\right)_{1 \text { sisn }}$ are $\Perp r$.v $\left(x_{1 \ldots}, x_{n_{1}}\right),\left(x_{\left.n_{1}+\ldots, x_{n_{2}}\right)}, \ldots,\left(x_{n_{R}+1}, \ldots, x_{n}\right)\right.$ are \Perp
The previous proposition coves a case of an infinite family
Lemma The two randan variables $\left(x_{i}\right)_{i \in I}$ and $\left(y_{j}\right)_{j \in J}$ with values in $\prod_{k E I} E_{i}$ and $\prod_{j \in J}$ are independent if and only $\forall i_{1} \ldots, i_{k} \in I \quad \forall j, \ldots, j e \in T$,

$$
\left(x_{i}, \ldots, x_{i k}\right) \Perp\left(y_{j 1}, \ldots, y_{j e}\right)
$$

Proof \Rightarrow This follows from the composition principle with the function

$$
\bar{f}:\left(x_{i}\right)_{i \in 1} \mapsto\left(x_{i 11}, \ldots, x_{i k}\right) \text { and } g:\left(y_{j}\right)_{j \in s} \mapsto\left(y_{j_{1}}, \cdots, y_{j e}\right)
$$

(E) We cepily the previous proposition with

Which are π-systems containing such that $\sigma(b)=\sigma\left(\left(x_{i}\right)_{i \in I}\right), \sigma\left(B_{\imath}\right)=\sigma\left(\left(x_{j}\right)_{j \in \mathcal{E}}\right)$ and $\forall A \in b_{1}, \forall B \in b_{7}, \quad B(A \cap B)=P(A) P(B)$
We now introduce the notion of kail σ.field.
Definition If $\left(X_{i}\right)_{i \geqslant 1}$ are random variables, we set $B_{n}=v\left(X_{k}: k \geqslant n\right)$ and $B_{\infty}=\bigcap_{n \geqslant 1} B_{n}$, called the tail o-field of $\left(X_{i}\right)_{i \geqslant 1}$
Intuitively B_{∞} corresponds to the events which do not change if we change the values of a finite number of X_{i}^{\prime} s.
$\frac{\text { Example }}{\{f}\left(x_{i}\right)_{i \geqslant 1}$ are real -valued, set $s_{n}=x_{1}+\cdots+x_{n}$. Then

$$
\left\{\sup _{n} S_{n}=+\infty\right\} \in B_{\infty}
$$

Indeed, for every $k \geqslant 1$, this event belongs to $\left\{\operatorname{mip}_{n \rightarrow k}\left(x_{k}+x_{k+1}+\cdots+x_{n}\right)=+1 \geqslant\right\} \in B_{k}$
Theorem (Volmogoror $0-1$ law) Assume that $\left(X_{i}\right)_{i>1}$ are independent then $\forall B \in B_{\infty}, \quad P(B)=0$ or $P(B)=1$

Proof: Set $D_{n}=\in\left(X_{1}, \ldots, x_{n}\right)$. Then $D_{n} \Perp B_{n+1}$, hence $D_{n} \| B_{\infty}$ since $\beta_{\infty} \subset B_{r+1}$
Therefore $\quad \forall A \in \bigcup_{n=1}^{\infty} D_{n}, \forall B \in B_{\infty}, P(A \cap B)=\mathbb{P}(A) P(B)$
But $\bigcup_{n=1}^{\infty} D_{n}$ is a π-system and $\sigma\left(\bigcup_{n=1}^{\infty} O_{n}\right)=\sigma\left(\left(X_{n}\right)_{n \geqslant 1}\right)$
Hence $\forall A \in \sigma\left(x_{n}: n \geqslant 1\right), \forall B \in B, \infty, B(A \cap B)=V(A) B(B)$
Hone $\forall A \in B \wedge, \forall B \in B_{\infty}, \forall P(A \cap \varphi)=P(A) P(B)$.
Taking $A=B$, we get $B(B)=B(B)^{2}$, then $P(B)=0$ or 1 .
4) Real-valued randan variables

Recall that of $\left(x_{n}\right)_{n \geqslant 1}$ is a sequence in R, we write

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \sup _{k \geqslant n} x_{k} \in \bar{B}=\mathbb{R} \cup\{ \pm \infty\} \\
& \liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} i_{k \geqslant n} \in \bar{R}
\end{aligned}
$$

Proposition Ret $f_{n}:(E, \varepsilon) \rightarrow(\bar{R}, B(B))$ be meorumable functions Then sup f_{n}, $i_{n} \delta_{n}$, limp f_{n}, liming f_{n} are measurable (We equip $\overline{\sqrt{R}}$ with the distance $d(x, y)=\mid A_{\text {cretan }}^{n}$ - Arctany \mid
Proof: We show it for $f=$ sup fur (it is similar for the other function). It is enough to show that
$\forall a \in B, \gamma^{-1}([-\infty, a]) \in \mathcal{R}$.
But $\delta^{-1}([-\infty, a])=\bigcap_{n \geqslant 1} f_{n}^{-1}([-\infty, a]) \in E$.
Take home message: any "reasonable" operation on meesmable functions gives a meessuable penction

Definition A simple function $f:(E, \varepsilon) \rightarrow(R, B(R))$ As a necesurable function taking a finite number of values Equivalently, f can be written in the form $f(x)=\sum_{i=1} a_{i} \mathbb{1}_{x \in A_{i}}$ ($A_{i}\left(-\varepsilon, a_{i} \in \mathbb{R}\right)$
Demotes By taking intersections, a wimple function can be written uniquely in the form $f(x)=\sum_{i=1} b_{i} \mathcal{L}_{x \in R_{i}}$ with $b_{1}<b_{2}<\cdots<b_{n}$ and $\left(B_{i}\right)_{1 \leq i \leq m}$ disjoint.
Theorem Let $f: E \rightarrow \mathbb{R}^{+}$be a measurable frenction. There exists a sequence $\left(f_{n}\right)$ of simple functions sit $0 \leq f_{n}+f$, that is $\forall x \in E$, the sequence $\left(g_{n}(x)\right)_{n \geqslant 1}$ is increasing with limit $f(x)$
In practice, this result is useful to show a result on general meastuable functions by first showing it for simple function end then by passing to the limit.
Proof: Stop: We approximate $\begin{aligned} B_{+} & \rightarrow B_{2} \\ x & \mapsto x\end{aligned}$
We just set $\left.\varphi_{n}(x)=\min \left(2^{-n} L 2^{n} x\right\rfloor, n\right)$

Step 2: Take $f_{n}=\varphi_{n} \circ f$.

Important application: Doob-Dypkin Lemma
Let $f:(E, \varepsilon) \rightarrow(F, \approx)$ and $g:(E, \sigma(f)) \rightarrow(B, B(B))$ be measurable function. Then we can write $g=h \circ 0$ with $h:(F, F) \rightarrow(B, B(B))$ a mearunable function

Proof: To simplify, assume $g \geqslant 0$ (Othamix, jut write $g=g^{+}-g^{-}$ with $g^{+}=\max (g, 0) \geqslant 0$ and $\left.g^{-}=\operatorname{mar}(-8,0) \geqslant 0\right)$
Step): Assume that $y=f_{A}$ with $A \in \sigma(8)$. Then $A=8^{-1}(B)$ with $B \in R$.
Setting $h=1_{B}$, we have $g(x)=h(g(x))$ because $f(x) \in B \Leftrightarrow x \in f^{-1}(B)$.
Step 2: By linearity, the results halls when g is a simple function.
Now let g_{n} be $\sigma(g)$-- -eamuable simple functions $s(t) 0 \leq g_{n} \uparrow_{g}$ where $g_{n}=h_{n}$ of with $h_{n}:(F, F) \rightarrow(\mathbb{R}, B(B))$ measurable
Then set $h(y)=\left\{\begin{array}{l}\operatorname{sep}_{n \geqslant 1} h_{n}(y) \text { if this quantity is finite } \\ 0 \quad \text { otherwise }\end{array}\right.$
Then for $x \in E \sup _{n \rightarrow 1} h_{n}(f(x))=\sup _{n \geq 1}^{n} g_{n}(x)=g(x)$, which implies $g(x)=h(f(x))$.
Remark A simple adaptation of the proof shows that the result is true when g is \mathbb{R}^{n}-valued C bact it is false in full geverality: see exercise sheet)
Remark In probability, this result is often used to say that $\sigma(x)$ necesuruble functions are function of X.
5) Integration END OF LECTURE 7

The notion of expectation is defined in probability using integration with respect to a measure in measure theory. Since it plays a crucial role, let res recall the setting W_{e} stat with $\geqslant 0$ functions
Let (E, ξ, μ) be a measured space.
a) Definition of the Lebesgue integral

Definition If $f^{\prime} E \rightarrow[0,+\infty]$ is a simple function, $f=\sum_{i=1}^{n} a_{i} \mathbb{1}_{A_{i}}$ with $\left.a_{i} \in \mathbb{R}+\cup \varepsilon+\infty\right\}$ and $A_{i} \in \mathcal{E}$, we define $\int f d \mu=\sum_{i=1}^{n} a_{i} \mu\left(A_{i}\right) \quad[$ with the convention $0 \times \infty=0]$

Remark we sometimes write $\int_{V_{E}} g d \mu, \int f(x) \mu(d x), \int f(x) d \mu(x)$
-if $f=\sum_{i=1}^{m} b_{i} 1_{B_{i}}, \sum_{i=1}^{n} b_{i} \mu\left(B_{i}\right)=\sum_{i=1}^{n} a_{i} \mu\left(A_{i}\right)$ (Ale efficicion of fd μ does not depend out he choice of the repersentective of 8)

Elementary properties Let $f, g \geqslant 0$ be simple functions

1) If $a, b \geqslant 0, \quad \int(a f+b y) d \mu=a \int f d \mu+b \int f d \mu$
2) $I f \quad f \leqslant g, \quad \int f d \mu \leqslant \int g d \mu$

In particular, $\int f d \mu=\operatorname{supp}_{\substack{\text { simple } \\ h \leqslant f}} \int^{2} d \mu$
Definition Let $f: E \rightarrow[0, \infty]$ be measurable. We set

$$
\int f d \mu=\sup \left\{\int h d \mu=0 \leqslant h \leqslant f, h \text { simple }\right\} \in \mathbb{R}_{+} \cup\{+\infty\}
$$

In probability, if $X: \Omega \rightarrow B_{+}$is a random variable, we define

$$
\mathbb{E}[X]:=\int_{\Omega} X(w) \mathbb{D}(d w)
$$

In particular, if $A \in \mathbb{E}, \mathbb{E}\left[\mathbb{1}_{A}\right]=\int_{\Omega} \mathbb{I}_{A}(\omega) B(d \omega)=P(A)$.
Proposition (1) If $0 \leqslant f \leqslant g \leqslant+\infty$, $\int f d \mu \leqslant \int g d \mu$
(2) If $f \geqslant 0$ and $\mu(\{x \in E: f(x)>0\})=0$, then $\int f d \mu=0$.

Proof: (1) Ob by definition
(2) Let h be a simple function such that $0 \leq h \leq f$.

Sine $h(x)>0 \Rightarrow f(x)>0$, wee have $\mu(\{x \in E: h(x)>0\})=0$.
Hence Shd $\mu=0$ by detrition of the integral of $a \geqslant 0$ simple function So $\int f^{d} \mu=0$ by definition of the integral of $a \geqslant 0$ function
b) Monotone convergence

Theorem (monotone convergence)
Let $\left(\gamma_{n}: E \rightarrow[0,+\infty)\right)_{n>1}$ be a non-decreasing sequence of function, (i.e $\left.V_{x} \in \in, \forall_{n x i}, f_{n+1}(x) \geqslant g_{n}(x)\right)$. Set $f(x)=\lim _{n \rightarrow \infty}{ }^{\uparrow} \pi f_{n}(x)$

Then $\int f d \mu=\lim _{n \rightarrow \infty} 1 \int f_{n} d \mu \in[0, \infty]$

Probabilistic version: If $\left(x_{n}\right)_{n \geqslant 0}$ is a nor-decrearing sequence of random variables, $\mathbb{T}\left[\lim _{n \rightarrow \infty} x_{n}\right]=\lim _{n \rightarrow \infty} \mathbb{F}\left[x_{n}\right]$

Here $\lim _{n \rightarrow \infty} x_{n}$ is the random variable w rs $\lim _{n \rightarrow \infty} X_{n}(w)$
Proof (1) Since $f \geqslant f_{n}$, we have $\int f d \mu \geqslant \int f_{n} d \mu$. Hence $\int f d \mu \geqslant \lim _{n \rightarrow \infty} \int f u d \mu$
(The limit exists sine ($\left.\int f_{n} d \mu\right)_{n \rightarrow 1}$ is increcening)
(2) For the other inequality, tare h simple, $h \leqslant f$ The goal is to coned h to $f n$.
Ideal: Set $E_{n}=\left\{x \in E: h(x) \leqslant f_{n}(x)\right\}$ problem: it can be empty for every $n \geqslant 1$.
Idea 2: introduce a ven parameter as to "get some space". set $E_{n}=\{x: h(x) \leq a f(x)\}$.
Since $h(x) \leq a f(x) \quad \forall x \in E$, we have $\bigcup_{k \geqslant 1} E_{n}=E$, and $f_{n_{k}} \geqslant \frac{1}{a} \mathcal{1}_{E_{n}} h$.
Hence $\int_{B} f_{n} d \mu \geqslant \int \frac{1}{a} \mathbb{1}_{E_{n}} h d \mu=\frac{1}{a} \sum_{i=1}^{k} b_{i} b_{i} \mu\left(B_{i} \cap E_{n}\right)$ if $h=\sum_{i=1}^{k} b_{i}^{a} \mathbb{1}_{B_{i}}$
But $B_{i} \cap E_{n} \uparrow B_{i}$
Hence $\lim _{n \rightarrow \infty} \mu\left(B_{i} \cap E_{n}\right)=\mu\left(B_{i}\right)$
Therefore $\operatorname{liming}_{\sim \rightarrow \infty}^{n \rightarrow \infty} \int \operatorname{lnd} d \mu \geqslant \frac{1}{a} \sum_{i=1}^{k} b_{i} \mu\left(B_{i}\right)=\frac{1}{a} \int h d \mu$
Take $a \rightarrow 1$: $\operatorname{liming}_{n \rightarrow \infty} \int \ln d \mu \geqslant \int h d \mu$.
Taking the sup over h simple, we get $\lim _{n \rightarrow \infty} \int_{n} f_{\mu} \geqslant \int f d \mu$
Corollary (1) If $\quad, \quad g \geqslant 0$ and $, b \geqslant 0, \quad \int(a f+b g) d \mu=a \int \delta d \mu+b \int g d \mu$
(2) If $f_{k} \geqslant 0, \int\left(\tau \delta_{k}\right) d \mu=\sum_{k} \int \delta_{k} d \mu$

Probabilistic version: for $X, y \geqslant 0$ rv. $\mathbb{E}[a x+b y]=a \mathbb{F}[x]+b \mathbb{E}[y]$ - for $X_{k} \geqslant 0 r s, \mathbb{E}\left[\sum_{k} X_{k}\right]=\sum_{k}$ 安 $\left[X_{k}\right]$

Proof: (1) let f_{n}, g_{n} be simp lo, functions such that $f_{n} \uparrow 8, g_{n} \uparrow g(o f 4)$ for existence). Then by monotone convergence:

$$
\begin{aligned}
& \int(a f+b g) d \mu=\lim \uparrow \int\left(a f_{u}+b g_{n}\right) d \mu \\
& =\lim \uparrow\left(a \int \ln f_{\mu}+b \int_{g n} d \mu\right) \\
& =a \int f d \mu+b \int_{g n} d \mu
\end{aligned}
$$

(2) Set $F_{n}=\sum_{k=1}^{n} f_{k}, F=\sum_{k=1}^{\infty} 8_{k}$. Then $F_{n} \uparrow F$, so

$$
\begin{aligned}
& \int F_{n} d \mu \rightarrow \int F d \mu_{n} \\
& \text { But } \int K_{n} d_{\mu}=\sum_{k=1} \int f_{k} d \mu \xrightarrow[n \rightarrow \infty]{\infty} \sum_{k=1}^{\infty} \int f_{k} d \mu
\end{aligned}
$$

Excomples. For $a \in E$, the $\underset{\sim}{\sim}$ irc measure at a is defined by $\delta_{a}(A)= \begin{cases}0 & \text { if a } \notin A \\ 1 \text { if a } \subset A\end{cases}$ for every $A \in E$. Then $\forall f: E \rightarrow \mathbb{R}_{+}$measurable,

$$
\int_{\mathbb{E}} f(x) \delta_{a}(d x)=f(a)
$$

Indeed, this is true for simple functions end we conclude by monotone convergence

- If \# is the counting measure on N, then $\forall f: \mathbb{N} \rightarrow \mathbb{R}_{+}$,

$$
S_{N} f(x) \#(d x)=\sum_{i=0}^{\infty} f(i)
$$

Indeed, this is true for simple functions and we conclude by nonohove comergence
c) Fatov's lemuce

Theorem (Fatois lemna) Let $\left(t_{n}\right)$ be a sequence of $\geqslant 0$ mearumble function. Then $\int\left(\operatorname{liming}_{n \rightarrow \infty} f_{n}\right) d \mu \leqslant \lim _{n \rightarrow \infty} \int f n d \mu$

Probabilistic setting: If $\left(X_{k}\right)_{k \geqslant 1}$ are $\geqslant 0 \operatorname{rv}, \mathbb{E}\left[\liminf _{n \rightarrow \infty} X_{n}\right] \leq \operatorname{limaif}_{n \rightarrow \infty} \mathbb{F}\left[X_{n}\right]$
Proof: By definction, $\operatorname{liming}_{n \rightarrow 2} f_{n}=\lim _{k \rightarrow \infty} \uparrow\left(\inf _{n \geqslant k} f_{k}\right)$, so by monotone comeengence $\int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu=\lim _{k \rightarrow \infty} \uparrow \int\left(\operatorname{ivg} f_{n \rightarrow k}\right) d \mu$. But for every integer $\left.p \geqslant k, \lim _{n \geqslant k} f_{n} \leqslant f_{p}\right)$ Which implies $\int_{\text {we get the result }}\left(\operatorname{ling}_{n \rightarrow k} f_{n}\right) d \mu \leqslant \operatorname{ing}_{p \geqslant k} \int \operatorname{fpd\mu }$ By taking the increasing linitus $k \uparrow s$,
d) Markon's inequality

We say that a properly is tme almost e verywhere (a.e) if the set of $x \in E$ for which $i t$ is nod true is vegligeable, ie. hes 0 meenue (in prodsabilily: almostsudy /a.s) Proposition Let $f \geqslant 0$
(1) $\forall a>0, \mu(\{x: f(x) \geqslant a\}) \leqslant \frac{1}{a} \int f d \mu$
(2) $\int \delta d \mu<\infty \Rightarrow f<\infty$ a.e
(3) $\int f d \mu=0 \Rightarrow f=0$ a.e
(4) If $g \geqslant 0, \quad f=g$ a.e $\Rightarrow \int f d \mu=\int g d \mu$

Probabilishic sotting for $x, y \geqslant 0$ a.v.
(1) $\forall a>0, B(X \geqslant a) \leq \frac{1}{a} E[X]$ (Makoo's ivequality)
(2) $\mathbb{E}[X]<\infty \Rightarrow X<\infty$ a.s.
(3) $E[x]=0 \Rightarrow x=0$ a.s
(4) $x=y$ a-s $\Rightarrow \mathbb{E}[x]=\mathbb{E}[y]$

Proof (1) Set $E_{a}=\{x: f(x) \geqslant a\}$. Then $f \geqslant a \mathbb{H}_{E_{a}}$ Hence $\int \delta d \mu \geqslant \int a \mathbb{1}_{A_{c}} d \mu=a \mu\left(A_{a}\right)$
(2) Set $A_{n}=\{f \geqslant n\}$ (i.e $\left.A_{n}=\{x: f(x) \geqslant n\}\right)$
and $A_{\infty}=\{8=\infty\}$.
Then $\mu\left(A_{\infty}\right)=\mu\left(\bigcap_{n \rightarrow 1} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \leqslant \lim _{n \rightarrow \infty} \frac{1}{n} \int 8 d \mu=0$.
(3) (G) Already seen
\Rightarrow Set $B_{n}=\left\{8 \geqslant \frac{1}{n}\right\}$. Then $\mu\left(B_{n}\right) \leqslant n \int f d \mu=0$
Hence $\mu(\{8>0\})=\mu\left(\widehat{G}_{n=1} B_{n}\right) \leqslant \sum_{n=1}^{\infty} \mu\left(B_{n}\right)=0$
(4) Waite $\int \max (f, g) d \mu=\int \min (f, g) d \mu+\int(\max (f, g)-\min (f, g)) d \mu=\int \min (f, g) d \mu$.
But $\min (f, g) \leqslant f, g \leqslant \max (f, g)$

$$
\Rightarrow \text { a ace. }
$$

Hence $\int \min (f, g) d \mu=\int f d \mu=\int g d \mu=\int \max (f, g) d \mu$
e) Fubini's theorem

Recall that μ is σ-finite if ore can write $E=\bigcup_{n=1}^{\infty} A_{n}$ with $\left(A_{n}\right)_{n \geqslant 1}$ countable sequence of events with $\mu\left(E_{n}\right)<\infty \quad \forall n \geqslant 1$
Informally, Fubinis theorem states that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$is measurable, $\mu_{1} \cdots \mu_{n}$ are σ-finite, then the integral $S \iint \cdot f f\left(x_{1}, \beta_{n}\right) \mu_{1}\left(d_{a} \mid \cdots \mu_{n}\left(d d_{n}\right)\right.$ can be compacted by integrating in any order.

In probability, this means that one cen exchange $\mathbb{E L C .}]$ and $\int d x$ for $\geqslant 0$ r.v. We state the theorem for $n=2$

Theorem (Fubini-Tomelli) Let μ, D be σ-finite measures on (E, ε) and (F, \mathcal{H}). We equip $E \times F$ with He product o field $\varepsilon \otimes \mathbb{R}$. let $f: E X F \rightarrow \mathbb{R}_{+}$be measurable.
(1) $x \mapsto \int f(x, y) \rightarrow(d y)$ and $y H \int f(x, y) \mu(d x)$ are meernacable
(2) We have $\int_{E x f} f d \mu \uparrow \gamma=S_{E}\left(\int_{F} \delta(x, y) v(d, y)\right) \mu(d x)=\int_{F}\left(\int \delta(x, y) \mu(d x)\right) \gamma(d y)$.

We do not give the proof here: it in valves additional inputs from measure theory
f) Integrating reul-valued random variables

If $f: E \rightarrow \mathbb{R}$ is real valued, when $\int|f| d \mu<\infty$, we say that $\&$ is μ-integrable and wite $f \in L^{1}(E, \varepsilon, \mu)$ More generally for $p>0$, when $\int \mid 8 I^{i} d \mu<\infty$ we write $f \in L^{P}(E, \varepsilon, \mu)$
Definition When $f|\delta| d \mu<\infty$, write $\delta=f_{+}-\delta$. with $\delta_{+}=\max (\delta, 0) \geqslant 0$ and $\delta_{-}=\max (-8,0)$ and define $\int \delta d \mu=\int \delta d d \mu-\int \delta-d \mu$.

As for $\geqslant 0$ penchions one cleats that for 8,84 -integrable:

- $\left|\int \delta d \mu\right| \leqslant \delta|8| d \mu$ (triangular inequality)
- $f \leqslant g \mu$ almost every huber implies $\int f d \mu \leq \int g d \mu$
$-\delta=g$ almost every where implies $\int \delta d \mu=\int g d \mu$.
Probabilistic setting $X: \Omega \rightarrow \mathbb{R}$ is integrable $\left(\right.$ in $L^{7}(\Omega, \theta, \mathcal{B})$ if 平 $[|x|]<\infty$.
When $\mathbb{E}\left[|x|^{p}\right]<\infty$ we write $x \in L^{p}(\Omega, R, \mathbb{S})$
(Observe that if x is bounded, ie e $|x| \leq c$ for a fired (detemininstrec c, then $\in[|x| p] \leqslant C^{p}$ so $x \in L^{p}$)
For real-valued function, we have the follanng very important result.
Theorem (dominated convergence) Let $\left(f_{n}\right)$ be a sequence of integrable real- valued measurable fundrons. Assone
(1) $\exists 8: E \rightarrow R$ measurable such that $\delta_{n}(x) \xrightarrow[n \rightarrow \infty]{\longrightarrow} g(x)$ holds for μ-almost all
(2) $7 g: E \rightarrow \mathbb{R}_{+}$measurable such that $S g d \mu<\infty$ end $\forall n \geqslant 1,\left|g_{n}(x)\right| \leq g(x)$ for μ-almost allee [domination

Then $\left|\left|\delta_{n}-8\right| d \mu \rightarrow \infty\right.$ and $\int f_{n} d \mu \rightarrow \int \delta d \mu$ condition]

Probabilistic setting Let X be seal -valued v.v. Assure that:
(1) $\exists X$ r.v. such that $X_{n} \xrightarrow[n \rightarrow \infty]{ } X$ almost surely
(2) $\exists z \geqslant 0$ rv. such that $\mathbb{E}[z]<\infty$ and $X_{n \geqslant 1},\left|X_{n}\right| \leqslant Z$ almost surely Then $\mathbb{E}\left[\left(X_{n}-X\right] \underset{n \rightarrow \infty}{\longrightarrow} 0, \mathbb{E}\left[X_{n}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[X]\right.$

Remark In the dominetion condition, it is social that the dominating function must Nor depend on n.

Proof: By (1) and (21, $\mid 81 \leqslant g ~ \mu$ almost eveagwhere, so \int gil $\mu \leqslant \int g d \mu<\infty$, which slows that 8 is intiegredle
Next, the dee e is to covider $h_{n}=2 g-18-8 n \mid$.
Ob serve that $h_{n} \geqslant 0 \mu$-almost everyutree, so that $h_{n}=h_{n} 1_{h_{n} \geqslant 0} \mu$ almost every where.
By Faro's lemme: $\int \operatorname{liminif}_{n \rightarrow \infty} f\left(h_{n} d_{h_{n}>0}\right) d \mu \leqslant \operatorname{limerif}_{n \rightarrow \infty} \int h_{n} \Delta_{m_{\rightarrow 0}} d \mu=\operatorname{lcmard}_{n \rightarrow 0} \int h_{n} d \mu$
$\int 2 g d \mu$
Thus $\left.2 \int g d \mu \leqslant 2 g-\operatorname{limmpp}_{n \rightarrow \infty} \int \mid 8-f_{n}\right) d \mu$, which implies $\int 18$ fad $\rightarrow 0$
The second comereruce follows from $\mid \int 8 d \mu$ - \int fid $\left|\leq \int\right| 8-8 n \mid d \mu$
The extererion of Fubini-Tomelli bo real-valued frenchion is the following
theorem (Fubini-lebesque) let $\mu_{1} D$ be σ-finite meesues on (E, ε) and (F, F). We equip $E \times F$ with He product o field $\varepsilon \otimes \pi$ let $f: E \times F \rightarrow \mathbb{R}$ be $\mu \oplus D$ integrable. Then
(1) for μ-almost every x, $y \mapsto f(x, y)$ is ν-integrable and for ν almost every $y, x \mapsto f(x, y)$ is μ-integrable
(2) The functions $x \mapsto \iint f(x, y) v(d y)$ and $y \mapsto \int f(x, y) \mu(a)$ are well defined, except maybe on sets with O measure, and ore respectively μ and 8 integrable.
(3) We have $\int_{E x P} f d \mu \theta D=\int_{E}\left(\int_{F} f(x, y) r(d y)\right) \mu(d a)=\int_{P}\left(\int_{E} f(x, y) \mu(d x)\right) \circ(d y)$

In prachic, one first checks is 181 is povintegrable ewing Fubim-Tomelli; and then one con interchange the order of integration.

Application If X is an integrable real valued riv. and $\left(A_{i}\right)_{i \geqslant 1}$ are events such that $\Omega=\bigcup_{i \geqslant 1} A_{i}$ and $A_{i} \cap A_{j}=\phi$ for $i \neq j$, then

$$
\mathbb{E}[x]=\sum_{i=1}^{\infty} \mathbb{E}\left[x \mathbb{1}_{A_{i}}\right]
$$

This is useful when one to treat several different cases.

It can be seen as a functional veerion of the law of total probability, which is:
$B(A)=\sum_{i=1}^{\infty} B\left(A \cap A_{i}\right) \quad$ (Which over from the fec that $A=\bigcup_{i=1}^{\infty} A \cap A_{i}$)
Example: If $y, \mathbb{T}_{\text {valued }} r \cdot v$ and $x \geqslant 0, \mathbb{E}[X]=\sum_{i \in \mathbb{Z}} \mathbb{E}\left[x \mathbb{1}_{y=i]}\right.$
6) Classical laws
a) Discrete laws

- reniformlaw: If E is a finite set with nelements, X follows the uniform distribution on E if $B(X=x)=\frac{1}{n}$ for ell $x \in E$
- Bermalle law of preaneter $p \in[0,1]$: it's the law of a riv x in $\{0,15$ with $B(x=1)=p \quad \mathbb{P}(x=0)=1-p$ Interpretation: result of a rigged coin giving heads with probability p
- Binomial law $B(n, p)\left(n \geqslant 1, p \in[0,0)\right.$ it's the law of a r., in $\{1, \ldots, n\}$ with $\rho(x-1)=\binom{n}{p} p^{b}(1-)^{p e}$ Interpretation: number of heads wren tossing n hives the previous coin
- Geometric lav of parameter $p \in(0,1)$. It's the haw of a riv in $\{0,1, \ldots\}$ with $\mathbb{B}(x-1)=p(1-p)^{k-1} k \geqslant 1$.

Interpretation: member of trials before the first heads with the previous coin

- Poisson lave of parameter $\lambda \geqslant 0$: irs the law of a rv. in \mathbb{N} with $B(x=k)=\frac{\lambda^{k}}{k!} e^{-k}, k \geqslant 0$ Intornetation: lour of rave events (tAlus will be seen later)
- Cad woo lame END Of CECTURE 8 this involves the notion of density
Definition bet $p: R \rightarrow R+$ be a measuacte function such that $\int_{R} p(x) d a=1$
For $A \in B(R)$, the formula $\mu(A)=\int_{A} p(x) d x=\int \mathbb{1}_{A}(x) p(x) d x$ defines a probadorility measure on R A r.v. x having this as law is called a riv. with demity p. It's af is $\mathbb{B}(x \leq x)=\int_{-\infty}^{x} p(c) d t$.

1) ademity is not uniquely defied: it is defined up to a O lebesgue measure set (if $p=\varphi$ almost every where, X has derrity p and q I
Ore can check that for every $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$veresurable $\mathbb{E}[f(X)]=\int_{\mathbb{R}}^{C+} f(x) p(x) d x$
Indeed, if f is the form $f=\mathcal{1}_{A}$ with $A \in B(\mathbb{R})$, we have
$\begin{aligned} \mathbb{E}[f(x)]=\int_{\Omega} \mathbb{1}_{A}(x(\omega)) \mathbb{P}(d \omega) & =\mathbb{P}(\{w \in \Omega: x(\omega) \in A z) \quad \text { (definition of the integral of a simple frenction) } \\ & =P_{X}(A)\end{aligned}$
$A l_{s_{0}} \int_{\mathbb{R}} f_{A}(x) p(x) d x=\int_{A} p(x) d x=P_{x}(A)$ by definition.
By linearity, (y) holds for f simple. Then take $0 \leq f_{n} \lambda f$ with fo rs simple.
Then

- Uniform law on [ch] (acc): $p(x)=\frac{1}{b-e} 1_{[a, b]}(x)$

- Exponential law of parameter $\lambda>0 \quad p(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geqslant 0}$

Then $W^{2}[x]=\int_{0}^{\infty} \lambda x e^{-\lambda x} d x=\frac{1}{\lambda}$

It selfies $B(x>a+b)=B(x>a) P(x>b)$ (memorylers property)

- Gelession lour $N\left(m, \sigma^{2}\right) \quad\left(m \in \mathbb{R}, \sigma^{2}>0\right)$

One checks that $\mathbb{E}[x]=m, \quad \sigma^{2}=E\left[(x-m)^{2}\right] p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-}$
Remark If x has density p, its CDF $F(x)=\int_{-\infty}^{x} p(u)$ du is continuous. Indeed, tate a sequence $x_{n} \rightarrow x$. Then $F\left(x_{n}\right)=\int_{R} \frac{\underbrace{p u) f_{\left.j-\infty, x_{n}\right]}}(u) d u \text {. }}{f_{n}(u)}$

- For fixed $u \neq x, f_{n}(u) \rightarrow p(u) \mathcal{1}_{3-\infty, 2]}(u)$ since $\{x\}$ has o Lebesgue measure, this convergence holds for
- $\left|\delta_{n}(u)\right| \leqslant p(u)$ which is an integrable function which does not de pend on n

Thess $F\left(x_{n}\right) \longrightarrow \int_{R} p(u) \mathcal{1}_{\left.]_{-\infty}, x\right)}(u) d u=F(x)$
1! The converse is false in general: CDF contimas \Rightarrow dimity What is true is CDF of X contimuas $\Leftrightarrow \forall x \in \mathbb{R}, \mathbb{P}(X=x)=0$.

Remark If $F: R \rightarrow\left[a i s\right.$ is non-dececeaning, $\lim _{-\infty} F=0, \lim _{-\infty} F=1$, continuous $A N D$ piece-wise C^{1}, that is $\exists-x=a_{0}<a_{1}<\cdots<e_{n}=\infty$
 Indeed, for every $x \in R$ we then have $F(x)=\int_{-\infty}^{x} p(t) d t$
In particular, if the oof of X is continuous and piece-wise ${ }^{-1}$, then X has ademity (given by the ass. derivative of its (at)
Remark One similualy defines random variables with dewily on $R_{R}^{n}:$ if $p: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$is a measmadte function with $S_{\mathbb{R}^{2}} p\left(x_{1} \ldots, a_{n}\right) d x_{1} \ldots x_{n}, x=\left(x_{1}, \ldots, x_{n}\right)$ hes denity p if $\forall A \in B\left(\mathbb{R}^{n}\right)$,

$$
B(x \in A)=\int_{A} p\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} .
$$

Then $\forall 1 \leq i \leq n \quad x_{i}$ has a demitypin R obtrivine by integrating p with respect to the other variables: $p_{i}(x)=\int_{\mathbb{R}^{m+1}} p\left(x_{1}, \ldots, x_{i-1}, x_{1}, x_{i+1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{n}$
7) Integration and independence
the following result is very useful
Theorem (transfer theovenn) Let $x: \Omega \rightarrow E$ be a randan vavalle, $f: E \rightarrow R_{1}$ a measurable function. Then $\mathbb{E}[f(x)]=S_{E} g(x) T_{X}(d x)$
Proof: Step $)$: Take $f=\mathbb{1}_{A}$ with $A \in \varepsilon$. Then $\mathbb{E}\left[\mathbb{1}_{x \in A}\right]=\mathbb{T}(x \in A)$, and

$$
S_{E} \mathbb{P}_{A}(x) P_{x}(d x)=P_{x}(A)=P(x \in A)
$$

Step: By linearity, the result is Arne for any $\geqslant 0$ sample function. We then take a sequence (f) of simple frenetions such that $0 \leqslant f \leqslant f$ and $f_{n} \uparrow f$, and conclude by monotone comergene e:

$$
\begin{aligned}
& \mathbb{E}\left[f_{n}(x)\right]=S_{E} f_{n}(x) P_{x}(d x) \xrightarrow[n \rightarrow \infty]{\longrightarrow} S_{E} f(x) P_{x}(d x) \\
& \quad \int_{\Omega} f_{n}(x(w)) P(d w) \underset{n \rightarrow 0}{\longrightarrow} \int_{\Omega} f(x(w)) \mathbb{P}(d w)=\mathbb{E}[f(x)] .
\end{aligned}
$$

Hence $\mathbb{E}[f(x)]=S_{E} f(x) T_{X}(d x)$
Remark If the lenity, p, we have sen that for $f: R \rightarrow \mathbb{R}_{+}$measurable, $\mathbb{E}[8(x)]=\int_{\mathbb{R}} f(x) p(x) d x$. It is also $S_{R} f(x) P_{x}(d x)$ by the transfer theorem. For this reason we write $P_{x}(d x)=p(x) d x$

Remark the transfer theorem is also valid for $f: E \rightarrow \mathbb{R}$ (not necessarily $\geqslant 0$) bounded (write $f=8^{+}-8^{-}$wi th $f^{+}, 8^{-} \geqslant 0$) and more generally for $\delta: E \rightarrow \mathbb{R}$ such that $E[|g(x)|]<\infty$.

Application: Let U be uniform on $[0,1]$. Find the low of U^{2} Take $f: t 0,1] \rightarrow R_{+}$measurable. Then by the transfer theorem

氐 $\left[f\left(\nu^{2}\right)\right]=\int_{\mathbb{R}} f\left(u^{2}\right) T_{\nu}(d u)=\int_{0}^{1} f\left(\mu^{2}\right) d u \stackrel{\left.u^{2}=x\right]}{=} \int_{0}^{1} f(x) \frac{1}{2 \sqrt{x}} d x$
But we know that $\mathbb{I}\left[f\left(U^{2}\right)\right]=\int_{\mathbb{R}} f(x) \mathbb{D}_{L^{2}}(d x)$
We conclude that $T_{L^{2}}(d x)=1_{[0,1]}(x) \frac{1}{2 \sqrt{x}} d x$
Indeed, if $\int_{E} f(x) \mu(d x)=\int_{E} f(x) \nu(d x)$ for every $f: E \rightarrow \mathbb{R}_{+}$mecesunabl,
then $\mu=\nu$ (just take $\left.f=\mathbb{1}_{A}\right)$.
This is the dummy frenction method.
Application If \times has demity p, then $\mathbb{E}[|X|]=\int_{0}^{\infty}|x| \mathbb{P}_{x}(d x)=\int_{0}^{\infty} \mid x c p(x) d x$
Example If x has density $\frac{\alpha+1}{x^{\alpha}} \mathbb{1}_{\left[1, c_{c}^{(x)}\right.}$, then for $p>0$ I $\left.t x^{p}\right]<\infty \Leftrightarrow p>\alpha+1$.
Indeed, by the transfer theorem, $\mathbb{E}\left[X^{p}\right]=\int_{0}^{\infty} x^{p} p_{x}(d x)=\int_{1}^{+\infty} \frac{\alpha+1}{x^{p-\alpha}} d x$ which is finite if $p-\alpha>1$.
Cordlay If $x: \Omega \rightarrow E$ and $y: \Omega \rightarrow \mathbb{E}$ are two condom variables with save law, then $\mathbb{E}[f(x)]=\mathbb{F}[8(y)] \quad \forall f: E \rightarrow \mathbb{R}_{+}$measurable
proof: $\boldsymbol{E}[f(x)]=\int_{E} f(x) \mathbb{P}_{x}(d x)=\int_{E} f(x) \mathbb{P}_{y}(d x)=\mathbb{E}[f(y)]$
Example if $x: \Omega \rightarrow R_{+}$and $y: \Omega \rightarrow R_{+}$have the save law, then $\Phi\left[x^{+}\right]=\Phi[y p] \quad \forall_{p}>0$. END OF LECTURE 9

Theorem If X_{1}, \ldots, X_{n} are $⿻ 上 丨$ real－valued random variables with X_{i} having demity p_{1} ， then $\left(x_{1}, \ldots, x_{n}\right)$ has dewily $p_{1}\left(x_{1}\right) \ldots p_{n}\left(x_{n}\right)$

Proof：Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be measurable．We we se the dummy function noshed．
$B_{y}+\mathbb{B}_{\left(x_{1 \ldots x_{n}}\right)}=\mathbb{B}_{x_{1}} \otimes \cdots \otimes \mathbb{B}_{x_{n}}$ ．Thus

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} f\left(x_{1}, \ldots, x_{n}\right) \frac{p_{1}\left(x_{1}\right) \ldots p_{n}\left(x_{n}\right) d x_{1} \ldots d x_{n}}{\text { law of }\left(x_{1} \ldots, x_{n}\right)} \\
& \checkmark
\end{aligned}
$$

 check that (x, x) dee not have ea
Theorem let X, y be \Perp r．v．in \mathbb{R} with demeties．Then $X+y$ has a demit
Proof let p, φ be demities of x, y ．Ne ese the dummy frenction method．Let $f: R \rightarrow \mathbb{R}_{+}$be measurable．

$$
\mp[f(x+y)]=\int_{\mathbb{R}^{2}} f(x+y) p(x) q(y) d x d y=\int_{R} q(y)\left(\int_{\mathbb{R}} f(x+y) p(x) d x\right) d y
$$

To compute $\int_{\mathbb{R}} f(x+y)$ prox）dx（for fixed y ）we ere the change of variables $z=x+y$ ：

$$
\left.\left.\int_{R} f(x+y) p(x) \theta\right) d x=S_{R} 8(z) p(z-y) d z \text {, so } \mathbb{E} f(x+y)\right]=\int_{R} q(y)\left(\int_{R} f(z) p(z-y) d z\right) d y
$$

end renting Fubini－Tonelli this is $S_{\mathbb{R}} g(z)\left(S_{\mathbb{R}} p(z-y) q(y) d y\right)$ is
We conclude that $x+y$ hes a demith，given by $z \mapsto S_{R} p(z-y)(y)$ ） （called the convolution of x and y ）

Application Let (x, y) be a riv with demity in R^{2} ．Then $\mathbb{P}(x=y)=0$
Proof let p be a deity of (x, y) ．Using the transfer theorem，write

$$
\begin{aligned}
Q(x=y)=\mathbb{E}\left[1_{x=y}\right] & =\int_{\mathbb{R}^{2}} 1_{x=y} p(x, y) d x d y \\
& =S_{\mathbb{R}}\left(S_{\mathbb{R}} 1_{x=y} p(x, y) d x\right) d y
\end{aligned}
$$

Butforfioed $y \in \mathbb{R}, \quad x \mapsto \mathcal{L}_{x=y} p(x, y)$ is $=0$ if $x \neq y$ ．
thees $x \mapsto f_{x=y} p(x, y)$ is almost everywhere equal to 0 . Thee $\int f_{x=y} p(x, y) d x=0$. Thee $P(x=y)=\int_{R} 0 d y=0$

Application If x hes a density, (x, x) does not have a demit $(\operatorname{since} \mathbb{B}(x=x)=1)$
Corollary If x, y are II r, v with demities, then $B(x=y)=0$
Indeed, by what we have seen (x, y) has then a dewily in R^{2} ?
Theorem The following arsertrons are equivalent:
(1) x_{1}, \ldots, x_{n} are $上$

$$
\begin{aligned}
& \mathbb{E}\left[f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right)\right]=\int_{1} f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right) T T_{\left(x_{1} \ldots x_{n}\right)}\left(d x_{1} \cdots d x_{n}\right) \\
& =\int f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right) \Gamma_{x_{1}} \otimes \ldots x_{n} x_{x_{n}}\left(d x_{1} \ldots d x_{n}\right) \\
& \text { [Fublki] } \prod_{k=1} \int f_{k}\left(x_{k}\right){ }^{\top} x_{x_{k}}\left(d x_{k}\right) \\
& =\prod_{k=1}^{n} \mathbb{E}\left[\delta_{k}\left(X_{k}\right)\right]
\end{aligned}
$$

For (2) \Rightarrow (1)) aust the ne $^{k=1} s_{i}=1_{A_{i}}$ for A_{i} measurable to got

$$
\mathbb{P}\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=\mathbb{P}\left(X, \in A_{1}\right) \cdots \mathbb{P}\left(X_{n} \in A_{n}\right)
$$

In practice, to show that $x \Perp y$, one often computes $\mathbb{I}[g(x) g(y)]$ to obtain something of the form $\left(\int f(x) \mu(d x)\right)\left(\int g(y) \nu(d x)\right)$.
Corollary if $\left(x_{1}, \ldots, x_{n}\right)$ has a demity of a product form $g_{1}\left(x_{1}\right) \cdots g_{n}\left(x_{n}\right)$ then $x_{1} \ldots, x_{n}$ are \Perp

This readily follows from (2) \Rightarrow (1) in the previous Theorem

Remark If the frenctions f_{i} are real valued, the equality $\mathbb{E}\left[\prod_{i=1}^{n} f_{i}\left(X_{i}\right)\right] \stackrel{(5)}{=} \prod_{i=1}^{n} \mathbb{F}\left[f_{i}\left(X_{i}\right)\right]$ is true under the integrability condition $\left.\# t\left|g_{i}\left(x_{i}\right)\right|\right]<\infty$ for every $1 \leq i \leq n$
In particular, if X_{1}, \ldots, x_{n} are 11 integrable rv, then
$X_{1} \times X_{2} \cdots \times X_{n}$ is integrable and $\mathbb{E}\left[\prod_{i=1}^{n} X_{i}\right]=\prod_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$
WARNING in general this is false without the I) condition $\binom{$ tate $n=2, x_{1}=x_{2}}{$ with $\mathbb{E}\left[x_{1}\right]=0}$
Application (1) Let x be a real-valued in L^{2}. Then $x \in L^{1}$ and we define the variance of x
by $\operatorname{Var}(x)=\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]=\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2} \geqslant 0$
(2) $[$ Cauchy-Schwarz $]$ Let x be in L^{2} then $\mathbb{E}[|x|]^{2} \leq \mathbb{E}\left[x^{2}\right]$
(3) Let $\left(x_{i} \mid 1 \leq i \leq n\right.$ be independent seal-valued L^{2} random variables. Then

$$
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)
$$

Informally, the varicence of a random variable measures its "dispersion" from its mean.

Proof (1) Write $\mathbb{E} t|x|]=\mathbb{E}\left[|x| \mathbb{1}_{|x| \leq 1}\right]+\mathbb{E}\left[|x| \mathbb{1}_{|x|>1]}\right.$

$$
\begin{aligned}
& \leqslant \mathbb{E}\left[1 \cdot \mathbb{1}_{|x| \leq 1}\right]+\mathbb{E}\left[x^{2} \mathbb{1}_{|x|>1}\right] \\
& \leqslant 1+\mathbb{E}\left[x^{2}\right]<\infty
\end{aligned}
$$

To prove the formula for $V_{a}(X)$, write using linearity of expectation:

$$
\begin{aligned}
\mathbb{E}\left[(X-\mathbb{E}[x])^{2}\right] & =\mathbb{E}\left[x^{2}-2 x \mathbb{E}[x]+\mathbb{E}[x]^{2}\right] \\
& =\mathbb{E}\left[x^{2}\right]-2 \mathbb{E}[x] \mathbb{E}[x]+\mathbb{E}[x]^{2}=\mathbb{E}\left[x^{2}\right]-\sqrt{E}[x]^{2}
\end{aligned}
$$

(2) This follows from $0 \leq \operatorname{Var}(|x|)=\mathbb{E}\left[|x|^{2}\right]-\mathbb{E}[|x|]^{2}=\mathbb{E}\left[x^{2}\right]-\mathbb{E}[|x|]^{2}$
(3) It suffices to establish the result for $n=2$ (the general case follows by induction wing the fad that $\left.X_{1} \Perp X_{2}+\cdots+X_{n}\right)$.
Write $\operatorname{Var}\left(x_{1}+x_{2}\right)=\mathbb{E}\left[\left(x_{1}+x_{2}\right)^{2}\right]-\left(E\left[x_{1}+x_{2}\right]\right)^{2}$

$$
=\mathbb{E}\left[x_{1}^{2}\right]+2 \mathbb{E}\left[X_{1} x_{2}\right]+\mathbb{E}\left[X_{2}^{2}\right]-\left(\mathbb{E}\left[X_{1}\right]^{2}+2 \mathbb{E}\left[x_{1}\right] \mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{2}\right]^{2}\right)
$$

But $\left.\mathbb{F}\left[x_{1} x_{2}\right]=\mathbb{E}\left[x_{1}\right] \in x_{2}\right]$ by \mathbb{H}

$$
\text { Thee } \begin{aligned}
\operatorname{Van}\left(x_{1}+x_{2}\right) & =\left(\mathbb{F}\left[x_{1}^{2}\right]-\mathbb{F}\left[x_{1}\right]^{2}\right)+\left(\mathbb{F}\left[x_{2}^{2}\right]-\mathbb{E}\left[x_{2}\right]^{2}\right) \\
& =\operatorname{Var}\left(x_{1}\right)+\operatorname{Var}\left(x_{2}\right)
\end{aligned}
$$

Application If x is a $B(n, p)$ random variable, then $x \stackrel{l_{a v}}{=} y_{1}+\cdots+y_{n}$ with $\left(y_{i}\right)_{1 \text { sisn }}$ independent Bemoulli(p) random variables, so $\operatorname{Var}(x)=\operatorname{Var}\left(y_{1}+\cdots+y_{n}\right)=\operatorname{Var}\left(y_{1}\right)+\cdots+V_{a r}\left(y_{u}\right)=p(-p)+\cdots+p(1-p)$ $=n p(1-p)$.

Rencules. We have $\operatorname{Var}(a x+b)=a^{2} \operatorname{Var}(x)$

- (3) above is false in general without ㅂ $\left(\right.$ the $n=2 \quad x_{1}=x_{2}$)

