and series of inderendent
roudom variables
Outline：1）The use of Borel－Centelli
2）L^{4} version of the strong law of longe numbers
3）Kolmogorar＇s two series theorem
4）Kdmogorov＇s thee series theorem
5）Strong law of loge numbers
6）Different notions of convergence
7）Existence of an id sequence of riv．
The main goal of this chapter is to study limits of $x_{1}+\cdots x_{n}$ as $n \rightarrow \infty$ for independent $r . v$ ． Recall that a property $P=P(\omega)$ is said to be almost sue（ass．）if $\mathbb{B}(\{\omega \in \Omega: P(\omega)$ hold $\})=\mathbb{B}(P$ holds $)=1$ or，equivalently， $\mathbb{P}(\{\omega \in r: P(\omega)$ does not hold $\}\}=\mathbb{P}(P$ does not ho $(d)=0$ ．
1）The us of Bored－Contelli
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of $⿻ 上 丨$ real valued random variables and $\left(C_{n}\right)_{n \geqslant 1}$ a given sequence of rennes Then by Borel－Centelli lemmas：
－$\sum_{n=1}^{\infty} \mathbb{B}\left(X_{n}>a_{n}\right)<\infty \Rightarrow$ ass there exists n_{0}（random）st $n \geqslant n_{0} \Rightarrow X_{n} \leqslant a_{n}$
－$\sum_{n=1}^{\infty} B\left(x_{n}>a_{n}\right)=\infty \Rightarrow$ ass $x_{n}>a_{n}$ for infinitely many n
（since the evarars $\left\{X_{n} \sim Q_{n}\right\}$ are intr pend out）
This is very often used in conjunction with the following lena．

Beunce Let $X_{n} \times$ be seal riv. Assume that $\forall \varepsilon>0, \sum_{n=1}^{\infty} B\left(\left|X_{n}-x\right|>\varepsilon\right)<\infty$.
Then as $X_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} X$
Proof: Fix $\varepsilon>0$. By Bord-Contelli 1, as $\left|x_{n}-x\right| \leq \varepsilon$ for n sufficiently large S it is not posside to conduce directly that ass. $\forall \varepsilon>0 \quad\left|x_{n}-x\right| \leq \varepsilon$ for n sufficiently large: ingeneral it is not possible to exchange "ass" and" F on an uncountable set" $\$$ But we caen exchange "ass" and "V on a countable set" because a cantabile intersection of events with probability 1 hes probability 1.
The idea is to restrict the values of s along a (contras) sequence tending to 0 :
$\forall k \geqslant 1$, as $\left|X_{n}-X\right| \leqslant \frac{1}{2^{k}}$ for n sufficiently large
This a.s. $\forall k \geqslant 1,\left|X_{n}-X\right| \leq \frac{1}{2^{k}}$ for n sufficient e large,
this is equal to the event $\left\{X_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} X\right\}$
Thess $B\left(x_{n} \rightarrow x\right)=1$.
END OF LECTURE 10
Corollary bet $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of independent identically distributed (iii) real rendem-vaideb
(1) If $\boldsymbol{f}\left[\left|X_{1}\right|\right]<\infty$, then ass $\frac{x_{n}}{n} \rightarrow 0$
(2) If $氏\left[\left|x_{1}\right|\right]=\infty$, then us $\frac{x_{n}}{n}$ does not tend to 0 .
(3) If $\frac{x_{1}+\cdots+x_{n}}{n}$ converges $u-s$, then $\mathbb{F}\left[x_{1}\right]<\infty$

Proof $(1) W_{e}$ show that $\forall \varepsilon>0, \sum_{n=1}^{\infty} \mathbb{B}\left(\left|\frac{x_{n}}{n}\right|>\varepsilon\right)<\infty$.
To this, wring a result from the exerviesthed,

$$
\infty>\mathbb{E}\left[\frac{\left|x_{n}\right|}{\varepsilon}\right]=\mathbb{E}\left[\frac{\left|x_{1}\right|}{\varepsilon}\right]=\int_{0}^{\infty} \mathbb{P}\left(\frac{\left|x_{1}\right|}{\varepsilon} \geqslant x\right) d x=\sum_{n=0}^{\infty} \int_{n}^{n} B\left(\frac{\left|x_{1}\right|}{\varepsilon} \geqslant x\right) d x \geqslant \sum_{n=0}^{\infty} \mathbb{P}\left(\frac{\left|x_{1}\right|}{\varepsilon} \geqslant n+1\right)
$$

and (y) follows
(2) Similarly vo show that $\infty=\mathbb{E}\left[\left|x_{n}\right|\right] \leq \sum_{n=0}^{\infty} B\left(\left|x_{n}\right| \geq n\right)$,
so since the events $\left\{\left|x_{n}\right| \geqslant n\right\}$ are independent it follows by Boce-Coutelli 2 that ass $\left|\frac{x_{n}}{n}\right| \geqslant 1$ infinitilygtten.
So as $\frac{x_{n}}{n} \rightarrow 0$.
(3) Set $S_{n}=x_{1}+\cdots+x_{n}$. Sine $n \sim n+1$ as $n \rightarrow \infty$, a.s $\frac{S_{n}}{n}-\frac{S_{n+1}}{n} \longrightarrow 0$ thus $\frac{x_{n}}{n} \xrightarrow{\text { as }} 0$ thus $\mathbb{E}[\mid x, 1]<\infty$ by (1)

On goal is now to go towards the proof of one of the most important results in probability theory
Theorem (Strong law of law large mun bess-SLN)
Let $\left(X_{i}\right)_{i>1}$ be an cid sequence of integrable real valued randan variables ($\mathbb{X}\left[\left|X_{1}\right|\right]<\infty$) Then $\frac{x_{1}+1+x_{n}}{n} \frac{0.5}{n \rightarrow \infty} \Phi\left[x_{1}\right]$

Remark by the previous corollary (3) the integrability condition count be removed if we weul a finite limit

Ne stat with save variants which are simpler to establish
2) L^{4} version of the $S \angle N$

Theorem (L" version of SLW)
Let $\left(X_{1}\right)_{i \geqslant 1}$ be an lid sequence of real valued random variables in L^{4} (E $\left[X_{1}^{4}\right]<\infty$) Then $\frac{x_{1}+\cdots+x_{n}}{n} \frac{0.5}{n-x_{0}} \in\left[x_{1}\right]$

Proof of the theorem Without loss of generality it suffices to prove the result when $E\left[x_{i}\right]=0$ (for the general case ore cen then apply the result with $\bar{X}_{n}=X_{n}-\mp\left[x_{n}\right]$)
Set $S_{n}=x_{1}+\cdots+x_{n}$ and $K=\mathbb{E}\left[x_{1}^{4}\right]$
We show that $\sum_{n \geqslant 1} \mathbb{E}^{[}\left[\left(\frac{S_{n}}{n}\right)^{4}\right]<\infty .(y)$
Indeed, this will imply by Fubini that $\mathbb{E}\left[\sum_{n \geqslant 1}\left(\frac{S_{n}}{n}\right)^{4}\right]<\infty$, so that ass $\sum_{n \geqslant 1}^{n}\left(\frac{S_{n}}{n}\right)^{4}<\infty$ Since the general tam of a convergent series tends to 0 , this indeed implies" that ass. $\frac{S_{n}}{n} \rightarrow 0$
T_{0} show $(*)$, obscene that $S_{n}^{4}=\sum_{1 \leq j, j 2, j, j 4 \leq n} X_{j 1} X_{j 2} X_{j 3} X_{j 4}$, so that

$$
\mathbb{E}\left[S_{n}^{4}\right]=\sum_{1 \leq j_{1,2 j 3, j, 1} \leq n} \mathbb{C}\left[x_{j 1} x_{j 2} x_{i_{3}} x_{j 4}\right]
$$

Now, using the \Perp and $\mathbb{E}\left[X_{i}\right]=0$, we see that $\mathbb{E}\left[X_{j_{1}} X_{j 2} X_{j 3} X_{j 1}\right]>0$ as soon as one of the indies j_{i} is different from the other three one. For example,

$$
\mathbb{E}\left[x_{1} x_{2} x_{3} x_{2}\right]=\mathbb{E}\left[x_{1}\right] \mathbb{E}\left[x_{2} x_{3} x_{2}\right]=0 \text {. }\left[x_{2} x_{3} x_{2}\right]=0
$$

Thus, beeping only the remaining lames, we get that

$$
\mathbb{E}\left[s_{n}^{4}\right]=\sum_{j=1}^{n 0} \mathbb{E}\left[x_{j}^{4}\right]+6 \sum_{1 \leq j \leq j^{\prime} \leq n} \mathbb{E}\left[\left(x_{j}\right)^{2}\left(x_{j, j}^{2}\right)\right]
$$

Indeed, for each $j<j$ ' there me $8 \times x$ ways to choose $j 1, j 2, j s, j y$ so that j and j 'appear twice each Hence $\mathbb{E}\left[\left(S_{n}\right)^{4}\right]=n \mathbb{E}\left[X_{1}^{4}\right]+3 n(n-1) \mathbb{E}\left[\left(X_{1}\right)^{2}\right]_{1}^{2}$
$\leqslant \Phi\left[X_{1}^{4}\right]=K$ by Cauchy Schwas.
We conclude that $E\left[\left(\frac{S_{n}}{n}\right)^{4}\right] \leqslant \frac{3 K}{n^{2}}$ and (y) follows
Application Let $\left(A_{i}\right)_{i>1}$, be independent events having save probability p. Then

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{A_{i}} \frac{a .5}{n \rightarrow \infty} p
$$

This comes from the fact that $\left(\left.1_{A_{i}}\right|_{i=1}\right.$ are cid Bernoulli (p)) condom verables.
This result makes a connection between our "modern" axiomatic approach and the historical definition of probabilities as the frequency of an event happening when repeating an experiment a la ge number of times.
3) Kolmogerar two series theorem

The Kolmogera series the revers give condition for as comergence of sums of $\operatorname{L1}$ r.v. We start with a lemma.

Leunna (holmnogorar maximal inequality) $6 t\left(Z_{k} l_{\text {LEss }}\right.$ be independent real-valued rv. in L^{2}, centred $\left(\underline{L} t z_{k}\right]=0$ for $\left.1 \leq k \leq n\right)$. Set $S_{k}=z_{1}+\cdots+z_{k}$ for $1 \leq k \leq n$. Then $\forall x>0, B\left(\max _{1 \leqslant k \leq n}\left|S_{R}\right| \geqslant \lambda\right) \leqslant \frac{\mathbb{E}\left[S_{n}^{2}\right]}{\lambda^{2}}$.

Remains．If x_{11}, x_{n} are $⿻ 上 丨$ ，we have $\mathbb{B}\left(\max \left(x_{1 \ldots}, \ldots, x_{n}\right) \geqslant \lambda\right)=1-\mathbb{B}\left(\max \left(x_{1}, \ldots, x_{n}\right)<\lambda\right)=1-\mathbb{P}\left(x_{1}, \lambda, \ldots, x_{n}<\lambda\right)$ Which is $1-\mathbb{B}(x, 2 \lambda) \cdots P\left(x_{n}<\lambda\right)$ by 11 ．
However，here $S_{11} \ldots, S_{R}$ are in general not II．
－By applying plata＇s inequality we get $B\left(\left|S_{n}\right| \geqslant \lambda \left\lvert\,=B\left(S_{n}^{2} \geqslant \lambda^{2}\right) \leq \frac{1}{\lambda^{2}} \#\left[S_{n}^{2}\right]\right.\right.$ ：
the lune gives a better inequality sine moe $\left|S_{n}\right| \geqslant\left|S_{n}\right|$ ．
Proof Ede：for $1 \leq k \leq n$, set $A_{R}=\left\{\left|s_{k}\right| \geqslant \lambda,\left|s_{i}\right|<\lambda\right.$ for $\left.1 \leq i \leq k-1\right\}$ ．
These evouts are disjoint and their union in $\left\{\max _{1 \leq R \leq n}\left|\delta_{k}\right| \geqslant \lambda\right\}$ ．
Since they are disjoint， $0 \leqslant \sum_{R=1} \mathbb{1}_{A_{R}} \leqslant 1$ ．
Thus $\mathbb{E}\left[S_{n}^{2}\right] \geqslant \sum_{R=1}^{n} \mathbb{E}\left[S_{n}^{2} \mathbb{1}_{A_{R}}\right]$ Ede：$S_{n}^{2}=S_{R}^{2}+2 S_{R}\left(S_{n}-S_{R}\right)+\left(S_{n}-S_{R}\right)^{2}$ ．

$$
\begin{aligned}
& \text { Hence } F\left[S_{n}^{2}\right] \geqslant \sum_{k=1}^{n} \mathbb{E}\left[\left(S_{R}^{2}+2 S_{R}\left(S_{n}-S_{k}\right)+\left(S_{n}-S_{R}\right)^{2}\right) \mathbb{1}_{A_{R}}\right] \\
& \geqslant \sum_{R=1}^{n} \mathbb{E}\left[S_{R}^{2} f_{A_{R}}\right]+2 \sum_{R=1}^{n} \mathbb{E}\left[S_{R}\left(S_{n}-S_{R}\right) f_{A_{R}}\right] .
\end{aligned}
$$

But $S_{R} \mathcal{1}_{A_{R}}$ is $\sigma\left(Z_{1}, \ldots, Z_{R}\right)$ measurable and $S_{n}-S_{R}$ is $\sigma\left(Z_{R+1}, \ldots, Z_{n}\right)$ measurable This they are independent and $\mathbb{T}\left[S_{R} \dot{\alpha}_{A_{R}}\left(S_{n}-S_{R}\right)\right]=\mathbb{E}\left[S_{R} 1_{A_{p}}\right] \underbrace{\mathbb{E}\left[S_{n}-S_{R}\right]}_{=0}=0$
Bout $\sum_{R=1}^{n} \mathbb{E}\left[S_{R}^{2} \mathbb{1}_{A_{R}}\right] \geqslant \sum_{R=1}^{n} \mathbb{E}\left[\lambda^{2} \mathbb{1}_{A_{R}}\right]=\lambda^{2} \sum_{R=1}^{n} \mathbb{P}\left(A_{R}\right)$
Thus $\mathbb{E}\left[S_{n}^{2}\right] \geqslant \lambda^{2} \mathbb{B}\left(\max _{1 \leq R \leq n} \mid S_{R}(\geqslant \lambda)\right.$ ．

$$
=\lambda^{2} \mathbb{B}\left(\bigcup_{R=1}^{R} A_{R}\right)=\lambda^{2} \mathbb{B}\left(\max _{1 \leq R \leq n}\left(S_{R} \mid \geqslant \lambda\right)\right. \text {. }
$$

END of Lecture 11

（1）$\sum_{n \geqslant 1} \Phi\left[z_{n}\right]$ converges
（2）$\sum_{n=1} V_{n}\left(Z_{n}\right)<\infty$
Then $\sum_{k=1}^{n, 1} Z_{R}$ converges as to a finite riv．

Remark Here the $\left(z_{n}\right)_{n \geqslant 1}$, are not assumed bo have same lan. (is they have sane law and are not constant $=0$, then $\sum_{k \geqslant 1} V_{\text {ar }}\left(Z_{k}\right)=\infty$)

Proof of the theorem Since $\operatorname{Var}\left(z_{n}-\boxplus\left[z_{n}\right]\right)=\operatorname{Var}\left(z_{n}\right)$, we can cossume that $\mathbb{E}\left[z_{n}\right]=0$ (We then apply the result with $Z_{n}-\Phi\left[Z_{n}\right]$: we then $g e t \sum_{n}\left(Z_{n}-\mathbb{E}\left[Z_{n}\right]\right)$
Set $\delta_{n}=z_{1}+\cdots+z_{n}$. The ieee is to show that $\forall k \geqslant 1$, ass. $\exists m \geqslant 1$ st $V_{n} \geqslant m,\left|S_{n}-S_{m}\right| \leq \frac{1}{R}(\phi)$ Indeed, by interchanging $\forall \in$ cantable set and ass.
this implies as. $\forall k \geqslant 1, \exists m \geqslant 1$ sit $\forall n \geqslant m,\left|S_{n}-S_{m}\right| \leq \frac{1}{R}$. This as $\left.C S_{n}\right|_{n>1}$ is a Cauchy sequence in R, so ass. it convergences.

To show ($(*)$, fix $\ell \geqslant 1$ and set $A_{m}=\left\{\forall n \geqslant m:\left|S_{n}-S_{m}\right| \leqslant \frac{1}{R}\right\}$.
We went to show that $B\left(U A_{m=1}\right)=1$
But $\left(\left.A_{m}\right|_{m \geqslant 1}\right.$ is invearing for the indurion, so $\mathbb{P}\left(\bigcup_{m \geqslant 1} A_{m}\right)=\lim _{m \rightarrow \infty} \mathbb{S}\left(A_{m}\right)$
So we went to show $\mathbb{B}\left(A_{m}\right) \xrightarrow[m \rightarrow \infty]{\longrightarrow}$,

$$
\begin{aligned}
\text { But } 1-\mathbb{B}\left(A_{n}\right) & =\mathbb{B}\left(\exists n \geqslant m:\left|S_{n}-S_{m}\right|>\frac{1}{k}\right) \\
& =\lim _{l \rightarrow \infty} \mathbb{B}\left(\exists n \text { with } m \leq n \leqslant l:\left|S_{n}-S_{m}\right|>\frac{1}{k}\right)
\end{aligned}
$$

But by the maximal inequality:
$\mathbb{P}\left(\exists n\right.$ with $\left.m \leq n \leq e:\left|z_{m+1}+\cdots+z_{n}\right|>\frac{1}{R}\right) \leqslant k^{2} \mp\left[\left(z_{m+1}+\cdots+z\right)^{2}\right]$ $=k^{2}\left(\mathbb{E} t z_{m+1}^{2}+1+\cdots+\left[z^{2}\right\}\right) b b_{y} \Perp$
Hence $1-B\left(A_{m}\right) \leqslant k^{2} \sum_{i=m+1}^{\infty} E\left[Z_{i}^{2}\right]$, which rends to O as $m \rightarrow \infty$ as end $E t 27=0$ the remainder of a convergent series.
4) Kdmogorov's three series theorem

Theorem (Kdmogoror three series theorem) Let $\left(X_{n}\right)_{n>1}$ be \Perp real-valued rev. Assume that there exists $e>0$ such that
(1) $\sum_{k=1}^{\infty} \mathbb{S}\left(\left|x_{k}\right|>a\right)<\infty$
(2) $\left.\sum_{k=1}^{n} \mathbb{E} E X_{k} 1_{\left|X_{k}\right| \leq a}\right]<\infty$ converges as $n \rightarrow \infty$
(3) $\sum_{k=1}^{k=1} \operatorname{Var}\left(X_{k} \mathcal{1}_{\left(x_{k}\right)} \leq a\right)<\infty$

Then ass $\sum_{k=1}^{n} X_{k}$ converges as $n \rightarrow \infty$

Remark: it is possible to show that (we will not do it here): if ass $\sum_{k=1}^{n} x_{k}$ comerges as $n \rightarrow \infty$, then (1), (2) and (3) hold for every a>o

In particular:

- if (1), (2) or (3) fruits for cone ass, then $\mathbb{B}\left(\sum_{k=1}^{n} x_{k}\right.$ does not commerce $)>0$ and thus as $\sum_{k=1}^{n} X_{k}$ diverges by Kolmegeror's on law
- (4), (2) and (3) hold for one $a>0 \Leftrightarrow(1),(2)$ and (3) hold for every a>o

Proof: to simplify notation, set $y_{n}=x_{n} \mathbb{1}_{\left|x_{n}\right| \leq a}$
By (1), ass, $\left|X_{k}\right| \leq a$ for k sufficiently large by Bored-Centelli
thus ass $Y_{k}=X_{k}$ for k sufficiently large.
Therefore ass. $\sum_{k=1}^{n} X_{k}$ converges iss $\sum_{k=1}^{n} Y_{k}$ converges as $n \rightarrow \infty$
The random variables $\left(y_{n}\right)_{n \geq 1}$ are \mathbb{H} and in L^{2} (because they are bounded)
By (2) the series $\sum_{n \geqslant 1} \notin\left[y_{n}\right]$ converges and by (3) the series $\sum_{n \geqslant 1} \operatorname{Var}\left(y_{n}\right)$ converges
We conclude that $\sum_{R=}^{n} Y_{R}$ converges ass as $n \rightarrow \infty$ by Kdmogorov's two series theorem
5) The strong haw of henge numbers

Theorem $\operatorname{det}\left(X_{i}\right)_{i \geqslant 1}$ be ind random voriedles with $\boxminus\left[\left|X_{1}\right|\right]<\infty$. Then

$$
\frac{x_{1}+\cdots+x_{n}}{n} \underset{n \rightarrow \infty}{a-s} \mathbb{E}\left[X_{1}\right]
$$

The setting is quite different from before: here the r.v. have save distribution and we divide their sums. Ne will ese the following leman:
Lenue (Kronecker) Let $\left(x_{n}\right)_{n \geqslant 1}$ be a sequence of real number such that $\sum_{k=1}^{n} \frac{x_{k}}{R}$ converges os $n \rightarrow \infty$. Then $\frac{x_{1}+\cdots+x_{n}}{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow}$.

Proof: Set $w_{n}=\sum_{k=1}^{n} \frac{x_{k}}{k}$ and assume $w_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} w$. By Cesono's the rem, $\frac{1}{N} \sum_{n=1}^{N} w_{n} \underset{N \rightarrow \infty}{\longrightarrow} w$.
But $\frac{1}{N} \sum_{n=1}^{N} w_{n}=\frac{1}{N} \sum_{n=1}^{N}\left(\sum_{j=1}^{n} \frac{x_{j}}{j}\right)=\frac{1}{N} \sum_{n=1}^{N} \sum_{j=1}^{N} \mathbb{1}_{j \leqslant n} \frac{x_{j}}{j}=\frac{1}{N} \sum_{j=1}^{N} \sum_{n=1}^{N} \mathbb{1}_{j \leqslant n} \frac{x_{j}}{j}$
So $\frac{1}{N} \sum_{n=1}^{N} w_{n}=\frac{1}{N} \sum_{j=1}^{N}(N-j+1) \frac{x_{j}}{j}=\frac{N+1}{N} \sum_{j=1}^{N} \frac{x_{j}}{j}-\frac{1}{N} \sum_{j=1}^{N} x_{j}$
Therefore $\frac{1}{N} \sum_{j=1}^{N} x_{j}=\frac{N+1}{N} w_{N}-\frac{1}{N} \sum_{n=1}^{N} w_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} w-w=0$.

Prog f of the theorem Without loss of generality we can assure that $\mathbb{E}\left[X_{1}\right]=0$ (we cen add a constant to all the Y_{i})

By Krovecher'sleumce, if $\sum_{k=1}^{n} \frac{x_{k}}{R}$ converges ass. as $n \rightarrow \infty$, we would get the result. However this is not always the case, which why we need to work a bit.

$$
\text { First, } \begin{aligned}
\sum_{n \geqslant 1}^{1} \mathbb{P}\left(\left|x_{n}\right|>n\right)=\sum_{n \geqslant 1} \mathbb{B}\left(\left|x_{1}\right|>n\right) & \leqslant \mathbb{E}\left[\left|x_{1}\right|\right] \quad \text { (\& pager) } \\
& <\infty
\end{aligned}
$$

This by Bord-Contelle; ass. $\left|X_{n}\right| \leq n$ for n sufficiently longe
Thus it is enough to show that $\frac{x_{1}^{\prime}+\cdots+x_{n}^{\prime}}{n} \xrightarrow{a s} 0$ with $x_{n}^{\prime}=x_{n} \mathcal{L}_{\left|x_{n}\right| \leq n}$
By dominated convergence, $\boldsymbol{f}\left[x_{n}^{\prime}\right]=\mathbb{E}\left[x_{1} \mathbb{1}_{\left.\left|x_{1}\right| \leq n\right]} \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[x_{1}\right]=0\right.$
Thus, in tun, it is enough lo show that $\frac{y_{1}^{\prime}+\cdots+y_{n}^{\prime}}{n} \underset{n \rightarrow 0}{\text { ass. }} 0$ with $y_{i}^{\prime}=X_{i}^{\prime}-\Phi\left[x_{i}^{\prime}\right]$
To this end we use Kronecker's lump and "show that $\sum_{j=1}^{n} \frac{Y_{j}^{\prime}}{j}$ converges ass as $n \rightarrow \infty$ using Kolmogorov's two series theorem It is thess enough to show that $\sum_{n=1}^{\infty} f\left[\left(\frac{\left.Y_{n}\right)^{2}}{n}\right]<\infty\right.$.
For this we have to estimate $\mathbb{E}\left[\left(y_{n}^{\prime}\right)^{2}\right]=\operatorname{Var}\left(y_{n}^{\prime}\right)=\operatorname{Var}\left(x_{n}^{\prime}\right) \leq \mathbb{E}\left[x_{n}^{2}\right]=\mathbb{E}\left[\left|x_{1}\right|^{2} f_{\left|x_{1}\right| \leq n}\right]$
To simplify notation, let X be a c with the same haw as X_{2}
Then $\mathbb{E}\left[(Y \mid)^{2}\right] \leqslant \sum_{j=1}^{n} \mathbb{E}\left[|X|^{2} \mathbb{1}_{j-1}<|x| \leq j\right] \leqslant \sum_{j=1}^{n} j^{2} \mathbb{B}(j-1<|x| \leq j)$

$$
\begin{aligned}
& \text { Hone } \sum_{n=1}^{\infty} \Phi\left[\left(\frac{y_{n}^{\prime}}{n}\right)^{2}\right] \\
& \leqslant \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} 1_{j \leq n} \frac{j^{2}}{n^{2}} B(j-1<|x| \leq j)=\sum_{j=1}^{\infty} j^{2} B(j-1<|x| \leq j) \cdot \underbrace{}_{\frac{\sum_{n=j}^{\infty} \frac{1}{n^{2}}}{n_{j}}} \\
& \leqslant c \sum_{j=1}^{\infty} j \mathbb{B}(j-1<|x| \leqslant j)=c \sum_{j=1}^{\infty} \mathbb{E}\left[j \mathbb{1}_{j-k|x| \leq j}\right] \leqslant c \sum_{j=1}^{\infty} \mathbb{E}\left[(|x|+1) \mathbb{1}_{j-<|x| \leq j]}\right]=c(\mathbb{E}[|x|]+1)<\infty \\
& O \text { GeD OF LECTURE } 12
\end{aligned}
$$

6) Different notions of convergence

Let $\left(凶_{n}\right), X$ be riv in \mathbb{R}^{k}. We equip \mathbb{R}^{k} with any norm 1.1 (for example the standard Eudideon norm). We have already seen almost -sue convergence:

$$
X_{n} \xrightarrow[n \rightarrow \infty]{u-s} X \text { if } \mathbb{B}\left(\left\{\omega \in \Omega: X_{n}(\omega) \rightarrow x(\omega)\right\}\right)=1
$$

Definitions

- We say that X_{n} converges in probability to X and write $X_{n} \xrightarrow{B} X$ if

$$
\forall \varepsilon>0, B\left(\left|x_{n}-x\right| \geqslant \varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow}
$$

- When $X_{n}, X_{\text {are }} \mathbb{R}$-valued, we say that X_{n} converges in L^{p} to X and writs

$$
x_{n} \xrightarrow{L p} x \text { is }\left[\left|x_{n}-x\right|^{p}\right] \xrightarrow[n \rightarrow \infty]{\longrightarrow}
$$

Remarts.by monotonicity, for $\varepsilon^{\prime}>\varepsilon>0, \mathbb{P}\left(\left|X_{n}-x\right| \geqslant \varepsilon\right) \leqslant \mathbb{P}\left(\left|X_{n}-x\right|>\varepsilon\right) \leqslant \mathbb{P}\left(\left|X_{n}-x\right| \geqslant \varepsilon\right)$, so $X_{n} \xrightarrow{B} x \Leftrightarrow \forall_{\varepsilon}>0$ small enough $B\left(\left|X_{n}-x\right| \geqslant \varepsilon\right) \xrightarrow{\rightarrow} \rightarrow 0$
$\Leftrightarrow \forall \varepsilon>0$ small enough $\mathbb{P}\left(\left|x_{n}-x\right|>\varepsilon\right) \underset{e^{\rightarrow} \rightarrow \infty}{\longrightarrow}$

- as convergence involves the joint law $\left(X_{1} x_{1}, x_{2}, \ldots\right)$ while $L^{n \rightarrow \infty}$ and P comergence involves only the joint law $\left(x_{n}, x\right)$

Lenunce If $X_{n} \xrightarrow{B} X$ and $x_{n} \stackrel{B}{\rightarrow} y$, then ass $x=y$
Proof $F i x k \geqslant 1$. Since $\left\{\left|x_{n}-x\right|<\frac{1}{R}\right\} \cap\left\{\left|x_{n}-y\right|<\frac{1}{R}\right\} C\left\{|x-y|<\frac{2}{R}\right\}$ by the trienguler inequality, we get

$$
\mathbb{P}\left(|x-y| \geqslant \frac{2}{R}\right) \leqslant \mathbb{P}\left(\left|x_{n}-x\right| \geqslant \frac{1}{R}\right)+\mathbb{P}\left(\left|x_{n}-y\right| \geqslant \frac{1}{R}\right) \underset{n \rightarrow \infty}{\longrightarrow}
$$

Thees $\forall \in \geqslant x$, a.s. $|X-y| \leq \frac{1}{R}$. By interchanging $\forall \in$ countable set and ass. we get ass $\forall k \geqslant 1 \quad|x-y| \leq \frac{1}{R}$.
Thus ass $x=y$.
Proposition $X_{n} \xrightarrow{\mathbb{P}} X$ ifs $\left[\min \left(\left|x_{n}-x\right|, 1\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} 0$.
Proof \Rightarrow Thebe $\varepsilon>0$ and write

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{man}\left(\left|x_{n}-x\right|, 1\right)\right] & =\mathbb{E}\left[\operatorname{man}\left(\left|x_{n}-x\right|, 1\right) \mathbb{1}_{\left|x_{n}-x\right|<\varepsilon}\right]+\mathbb{E}\left[\min \left(\left|x_{n}-x\right|, 1\right) \mathbb{1}_{\left(x_{n}-x \mid \geqslant \varepsilon\right.}\right] \\
& \leqslant \mathbb{E}\left[\varepsilon \mathbb{1}_{\left.\left|x_{n}-x\right|<\varepsilon\right]}+\mathbb{E}\left[\mathbb{1}_{\left.\left|x_{n}-x\right| \geqslant \varepsilon\right]}\right.\right. \\
& \leqslant \varepsilon+\mathbb{P}\left(\left|x_{n}-x\right| \geqslant \varepsilon\right)
\end{aligned}
$$

Thus limsup $\mathbb{E}\left[\min \left(\left|x_{n}-x\right|, 1\right)\right] \leq \varepsilon$, which implies the desired result E Ware for $\varepsilon \in(0,1]$:

$$
\begin{aligned}
\overline{\mathbb{B}}\left(\left|x_{n}-x\right|>\varepsilon\right) & =\mathbb{P}\left(\min \left(\left|x_{n}-x\right|, 1\right) \geqslant \varepsilon\right) \\
& \leqslant \frac{1}{\varepsilon} \mathbb{E}\left[\min \left(\left|x_{n}-x\right|, 1\right)\right] \quad \text { (Masker inequality) }
\end{aligned}
$$

Proposition If $X_{n} \xrightarrow{\text { ass }} X$ or $X_{n} \xrightarrow{L^{p}} X$ then $X_{n} \xrightarrow{B} X$
Proof Assume $X_{n} \xrightarrow{u s} X$
Then $\min \left(\left|x_{n}-x\right|, 1\right) \frac{a-s}{n \rightarrow \infty} 0$ and is dominated by 1, so $\mathbb{E}\left[\min \left(\left|x_{n}-x\right|, 1\right)\right] \rightarrow 30$ by dominated convergence, thun $X_{n} \stackrel{{ }^{p}}{\rightarrow} x$ by the previous result.

- Assume $X_{n} \xrightarrow{L P} x$. Then $\forall \varepsilon>0$,

$$
\mathbb{B}\left(\left|x_{n}-x\right| \geqslant \varepsilon\right)=\mathbb{P}\left(\left|x_{n}-x\right|^{p} \geqslant \varepsilon^{p}\right) \leqslant \frac{1}{\varepsilon^{p}} \mathbb{E}\left[\underset{n \rightarrow \infty}{\left.\left|x_{n}-x\right|^{p}\right]}\right. \text { (Mlabov inequalih) }
$$

Remark In a simile spirit, when $X \in L^{2}$, writing

$$
\mathbb{P}(|X-\mathbb{E}[x]| \geqslant \varepsilon) \leqslant \frac{1}{\varepsilon^{2}} \mathbb{F}\left[\left\lvert\, X-\mathbb{E}\left[\left.x 3\right|^{2}\right]=\frac{1}{\varepsilon^{2}} \mathbb{E}\left[(X-\mathbb{E}[x])^{2}\right]\right.\right.
$$

so

$$
B(|x-E[x]| \geqslant \varepsilon) \leqslant \frac{1}{\varepsilon^{2}} \operatorname{Var}(x)
$$

This is the Bienaymé - Tchebychev inequality

Example Fix $\alpha>0$ and let $\left(X_{n}\right)_{n \geqslant 1}$ be independent random variables such that $P\left(X_{n}=1\right)=\frac{1}{n^{\alpha}}$ and $P\left(X_{n}=0\right)=1-\frac{1}{n^{\alpha}}$. Then

- $\mathbb{E}\left[X_{n} \mid P\right]=\frac{1}{n^{a}} \xrightarrow[n \rightarrow \infty]{\longrightarrow}$, so $X_{n} \xrightarrow{+\infty} 0$ and thus $X_{n} \xrightarrow{\mathbb{B}} 0$.
- For $\alpha>1, \sum_{n=1}^{\infty} B\left(x_{n}=1\right)<\infty$, so by Borel-Centelli ass $x_{n}=0$ for n sufficiently large, so ass. $x_{n} \rightarrow 0$.
- For $\alpha \in\left(0,23, \sum_{n=1}^{\infty} B\left(x_{n}=1\right)=\infty, \sum_{n=1}^{\infty} B\left(x_{n}=0\right)=\infty\right.$. By independoue and by Bond -Ccenrelli, ass. $x_{n}=0$ and $x_{n}=1$ infinity often Thee (Xu) diverges ass.
Proposition (subsubsequence lemma)
We have $X_{n} \xrightarrow{B} X$ if of every subsequence of $\left(X_{n}\right)$ we can extract a sub sub sequence which converges ass. bo X
(a subsequence is an increasing function $\mathbb{N} \rightarrow \mathbb{N}$)
In other words, $X_{n} \xrightarrow{B} X$ ifs \forall subsequence φ, \exists subsequence φ s.t $X_{\varphi(\varphi(n))} \xrightarrow[n \rightarrow \infty]{\text { ass }} X$
Proof \Rightarrow Let φ be a subsequence. Sine $X_{p(n)} \xrightarrow{B} x$, we know that $E[\min (|X \varphi(u)-x|, 2)]$ Ne can thin find a seebsequeme ψ such that $V_{n}>1, E\left[\min \left(\left|X_{Y o p(n)}-x\right|, 2\right)\right] \leq \frac{1}{2^{n}}$.
Then $\sum_{n=1} \oplus\left[\min \left(\left|x_{\varphi \circ \psi(n)}-x\right|, z\right)\right]<\infty$
Then $\mp\left[\sum_{n \geqslant 1} \min \left(\left|x_{\text {po o (1) }}-x\right|, 1\right)\right]<\infty$
Then ass. $\sum_{n \geqslant 1}^{n \geqslant 1} \min \left(\left|x_{\varphi \circ \varphi(m)}-x\right|, 1\right)<\infty$

We argue by contradiction: if $X_{n} \xrightarrow{p} x$, then we can find $\varepsilon>0$ cent φ subsequence with $\forall n \geqslant 1 \quad$ 東 $\left[\operatorname{mon}\left(\left|x_{\varphi(n)}-x\right|, z\right)\right] \geqslant \varepsilon(\phi)$
Let φ be subsequence sit $X_{\varphi 0 \psi(n)} \xrightarrow{\text { as }} x$
Then $\left.E \min \left(\mid x_{\varphi o p(n)}-x 1,1\right)\right] \underset{n \rightarrow 0}{\longrightarrow}$ because as comergence implies comergene in probability. This contradicts (y).

Example (flying saucepans) Courider $[0,3$ with its Bard a-field and $\lambda=$ Lebesgue measure For $k \geqslant 0$ and $0 \leq j \leq 2^{k}-1$, define

$$
\left.X_{2^{k}+j}(u)=\mathbb{1}_{\left[\frac{j}{2^{k}}\right.}, \frac{j+1}{2^{k}}\right] \quad \text { for } w \in[0,1]
$$

Then $X_{n} \xrightarrow{B} 0$ because for $n \geqslant 2$ and $\varepsilon \in(0,1], P\left(X_{n} P \varepsilon\right) \leqslant \frac{2}{n}$.
But $\forall w \in[0,1]$ there exists infinitely many $n \geqslant 1$ such that $X_{n}(\omega)=1$, so $\left.x_{n} \xrightarrow{a . s}\right) 0$
In the previous example, the portion of space where $x_{n} \neq 0$ became smaller and smaller, but this portion was moving all around.

Example Tate again to, [] with the Borelo, fid end the Lebesgue versus, and set

$$
X_{\left.2^{(}\right)}=2^{n} 1_{\left[0,1 \frac{1}{n}\right]}(w)
$$

Then $X_{n} \xrightarrow{a=s} 0$ but $\left[\left[x_{n}^{\left[0, \frac{1}{n}\right]}\right]\right.$
In the various example, the parson of space where $x_{n} \neq 0$ became smaller and smaller, but on this portion the contribution to the integral is non vegligealle because of high values (spikes) on it.
END OF LECTURE 13
The probabilistic notion that prevents such spites is uniform integrability If $x \in L^{1}$, then we have $E\left[|x| \mathbb{1}_{|x| \geqslant k]} \longrightarrow \gg 0\right.$ by dominated convergence Uniform integrability extends this to a family of random variables:

Definition A family $\left(Y_{i}\right)_{T E E}$ of integrable real valued random variables is uniformly integrable,

Examples (1) a finite family of L^{1} rV. rs UI
(2) If $z \geqslant 0$ is integrable, $\{x:|x| \leq z\}$ is UI. Indeed, if $|x| \leq z$, we here

$$
\Phi\left[|x| \mathscr{1}_{|x| \geqslant k]} \leqslant \mathbb{E}\left[z \mathbb{1}_{z \geqslant k]}\right.\right.
$$

(3) If $\left(\left.x_{i}\right|_{i \in I}\right.$ is bounded in L^{p},p> (ie. $\left.\operatorname{sep}_{T \in I} \mathbb{E}\left[\left|X_{i}\right|^{p}\right]<\infty\right)$, then $\left(X_{i}\right)_{i \in I}$ is UI. Indeed, if $C=\sup _{i \in \mathbb{F}} \mathbb{E}\left[\left|X_{i}\right| P\right]<\infty$, we have $\mathbb{E}\left[\left|x_{i}\right| \mathbb{1}_{\left|x_{i}\right|} \geqslant k\right]=\mathbb{E}\left[\frac{\left|X_{i}\right|}{\left|X_{i}\right|} \cdot\left|X_{i}\right|^{P} \mathbb{1}_{\left|X_{i}\right| \geqslant k}\right] \leqslant \frac{1}{k-1} \cdot c \frac{}{k \rightarrow \infty}$ reniformly:in i.
Remark By definition, a sequence $\left(x_{n}\right)_{n>1}$ of integrate $r . v$ is $山 I$ is $\sup _{n \geqslant 1} \mathbb{E}\left[\left|x_{n}\right| \mathcal{1}_{\left(x_{n} \mid \geqslant k\right]}\right] \longrightarrow 0$ By exaryle (1) this is equivalent to $\left.\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}\right| \mathbb{1}_{\left|x_{n}\right| \geqslant n}\right]\right]_{n \rightarrow \infty}^{\longrightarrow 0}$

Theorem A family $\left(X_{i}\right)_{i \in I}$ of integrable r.v is $U I$ iff
 ($\varepsilon-\delta$ condition)
Before the proof we give a very useful consequence.
Corollary If $\left(X_{i}\right)_{i \in I}$ and $\left(Y_{j}\right)_{j \in J}$ are LI families, then $\left\{X_{i}+Y_{j}: I \in I, j \in J\right\}$ is WI
Proof of the cool hay Since $\left|x_{i}+y_{j}\right| \leqslant\left|x_{i}\right|+\left|y_{j}\right|$ we get that $\left(x_{i}+y_{j}\right)_{i \in 5, j \in 5}$ is bounded in L ? Fix $\varepsilon>0$. Let $\delta>0$ be st $\mathbb{B}(A) \leq \delta \Rightarrow \Phi\left[\left|x_{i}\right| \mathcal{A}_{A}\right] \leq \frac{\varepsilon}{2}$ and $\mathbb{E}\left[\left|y_{j}\right| \mathcal{A}_{A}\right] \leq \frac{\varepsilon}{2} \quad \forall i \in I, j \in J$. Then $\mathbb{E}\left[\left|Y_{i}+Y_{j}\right| \mathcal{A} A\right] \leq \varepsilon$

$$
\sim
$$

Proof of the theorem \Leftrightarrow Let $k>0$ be such that $\sup _{i \in I} \in\left[\left|x_{i}\right| \mathcal{L}_{\left(x_{i} \mid \geqslant k\right] \leq 1}\right.$
Then $\forall_{\in \in S}, \mathbb{E}\left[\left|X_{i}\right|\right]=\mathbb{E}\left[\left(X_{i} \mid f_{\left(x_{i} \mid<k\right]}+\mathbb{E}\left[\left|X_{i}\right| \mathcal{1}_{|x| i, k}\right] \leqslant k+1\right.\right.$.
Thus $\left(X_{i}\right)_{\text {: }}$ is bounded in L ?
Now fix $\varepsilon>0$
Let $K_{\varepsilon}>0$ be such that $\sup _{i \in \mathcal{I}} \mathbb{E}\left[\left|x_{i}\right| \mathbb{1}_{\left.\left|x_{i}\right| \geqslant k_{\varepsilon}\right] \leq \varepsilon}\right.$
Then for $B(A) \leq \frac{\varepsilon}{k_{\varepsilon}}$ we have foritI: $\mathbb{E}\left[\left(y_{i} \mid \mathbb{1}_{A}\right]=\mathbb{E}\left[\left|x_{i}\right| \mathbb{1}_{A} 1_{\left|x_{i}\right| \leqslant k_{\varepsilon}}\right]+E\left[\left|x_{i}\right| \mathbb{q}_{A} \mathbb{1}_{\left.\left|x_{i}\right| \mid k_{\varepsilon}\right]}\right]\right.$ $\leqslant K_{\varepsilon} B(A)+\varepsilon$
$\leqslant 2 \varepsilon$
\Leftrightarrow Fix $\varepsilon>0, \delta>0$ such that the $\varepsilon-\delta$ condition holds.
 So $\in\left[\left(x_{i} \mid 1_{\left|x_{i}\right| \geqslant k}\right] \leqslant \varepsilon\right.$ (take $\left.A=\mathbb{1}_{\left|x_{i}\right| \geqslant k}\right)$
In tums out that UI is precisely what bridges the gap between con vergence on probability and L^{1} convergence:
Theorem Let $\left(X_{n}\right)_{n>1}$ be integrable real-valued reendan variable end X a real-valued rev. Then $X \in L^{1}$ and $X_{n} \xrightarrow{L^{1}} X$ if $X_{n} \xrightarrow{\mathbb{B}} X$ and $\left(X_{n}\right)_{n \rightarrow 1}$ is LI

It can be seen as an extension of the dominated convergence theorem.
Proof \Rightarrow We have already seen that $L 1$ comergence implies comengence in probabobility To show that $\left.C X_{n}\right|_{n \geqslant 1}$ is $W I$ by the corday it suffices bo show that $\left(X_{n}-X\right)_{n \gg 1}$ is $W I$. To do thus, fro $\varepsilon>0$ and choose n_{0} sit $n \geqslant n_{0} \Rightarrow \mathbb{E}\left[\left|X_{n}-x\right|\right] \leq \varepsilon$.
 for $k \geqslant k_{0}$.
E We first check that $X \in L^{1}$. By $X_{n} \xrightarrow{p} X$, there is a subsequence φ such that $X_{y m}{ }^{a / 3}=X$ Then by Fatou's lemme, $\mathbb{E}[|X|] \leq \operatorname{limininf}_{n \rightarrow \infty} \in\left[\left|X_{\text {peal }}\right|\right]<\infty$ since $\backsim I \Rightarrow$ boundedin $L \neq$.
Thus $\left(x_{a}-x\right)_{n \geq 1}$ is WI
Let $\varepsilon, \delta>0$ be such that the $\varepsilon-\delta$ condition holds. For n sufficiently large, $\mathbb{P}\left(\left|X_{n}-x\right| \geqslant \varepsilon\right) \leq \delta$ So $\mathbb{E}\left[\left|X_{n}-x\right|\right] \leqslant\left[\left|X_{n}-x\right| \mathbb{1}_{\left.\left|X_{n}-x\right| \geqslant \varepsilon\right]+\mathbb{E}\left[\left|X_{n}-x\right| \mathbb{1}_{\left|X_{n}-x\right|<\varepsilon}\right]}\right.$

$$
\leq 2 \varepsilon
$$

7) Existence of a sequence of iid random variables

The existence of en ied sequence of v, v of a given law on general spaces is a rather delicate question related to the existence of product measures.

In the case of real-valued reendom variables, it is possible to do it "by hent" using the existence of the lebesgue measure

Consider $(\Omega, B, B)=([0, B], 8([2, B), \lambda)$ with $\lambda=$ lebesgue measure. For $w \subset r, n \geqslant 1$, st $X_{n}(w)=\left\lfloor 2^{n} w J-2 L 2^{n-1} w\right\}$ when $L x S=\sup \{n \in \mathbb{Z}: n \leq x\}$ is the integer put of $x \in \mathbb{R}$

Proposition The riv $\left(\left.x_{n}\right|_{n \geqslant 1}\right.$ are ied with $B\left(x_{1}=0\right)=\mathbb{S}\left(x_{1}=1\right)=\frac{1}{2}$.
Proof: It is not too difficult bo check that $X_{n}(\omega) \in\{0,1\}$ and that $0 \leq \omega-\sum_{k=1}^{n} \frac{X_{\rho}(\omega)}{2^{k}} \leq \frac{1}{2^{n}}$ so that $w=\sum_{k=1}^{\infty} X_{k}(\omega) \times \frac{1}{2^{k}}$, so that the $\left(X_{k}(\omega)\right)_{k \geqslant}$ are the coefficients of the dyadic expansion of ω.

For $i_{1}, \ldots, i p \in \varepsilon_{0},\left(\frac{\text { 分 }}{}\right.$ we remake that $\left\{x_{1}=i_{1}, \ldots, x_{p}=i p\right\}=\left[\sum_{j=1}^{p} \frac{i_{j}}{2^{j}}, \sum_{j=1}^{p} \frac{i_{j}}{2^{j}}+\frac{1}{2^{p}}\right)$
In particular, $B\left(x_{1}=i_{1}, \ldots, x_{p}=i_{p}\right)=\frac{1}{2^{P}}$.
By summing oven $i_{1} \cdots i_{p-p}$ we get $B\left(x_{p}=i_{p}\right)=\frac{1}{2}$. Similaly, $B\left(X_{j}=i_{j}\right)=\frac{1}{2}$ for $1 \leq i \leq p$, Then $B\left(x_{1}=i_{1} \ldots, x_{p}=i_{p}\right)=\prod_{k=1}^{D} \mathbb{B}\left(x_{k}=i_{k}\right)$
Now let $\varphi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be ove-to-ove (for example $\varphi(a, b)=2^{a}(2 b+1)$).
Define $y_{i, j}=X_{\varphi(i, i)}$ for $i, j \geqslant 1$. Then $\left(y_{i, j}\right)_{i, j \geqslant 1}$ are id with the sone lavas x_{2}.
Set

$$
U_{i}=\sum_{j=1}^{\infty} \frac{y_{i j}}{2^{j}} .
$$

Lemme the r.v. $\left(L_{i}\right)_{i \geqslant 1}$ are id ceniform on $[0, r]$.

Proof First, W_{i} is o $Y_{i, j}: j \geqslant 1$) measurable as delimit of o($\left.Y_{i j ;}: j \geqslant 1\right)$ measurable function Then the riv $\left(\omega_{i}\right)_{i \geqslant 1}$ are \perp by con extension of the coalition principe to infinite families which we have already seen
$N_{\text {ext }}$, for $p \geqslant 1, \quad \omega_{i}^{(p)}=\sum_{j=1}^{p} \frac{y_{i, j}}{z^{j}}$ has the save low es $X^{(p)}=\sum_{n=1}^{p} \frac{x_{n}}{2^{n}}$. Then for $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$ continuous with compact support,

$$
\mathbb{E}\left[f\left(\cup_{i}^{(p)}\right)\right]=\mathbb{E}\left[f\left(x^{(\rho)}\right)\right]
$$

Tania limits as $p \rightarrow \infty$, by continuity of $\&$ and by dominated convergence, we get $\mathbb{E}\left[\&\left(\nu_{i}\right)\right]=\mathbb{E}[\&(x)]$ with X uniform on $[0,3]$

By Exerix 1(3) of Exercise Sheet 4, this implies $W_{i} \stackrel{\text { bow }}{=} x$

$$
\sim
$$

We can now show:
Preposition bet μ be a probability measure an R. There exists an id sequeme $\left(Z_{1}\right) \geqslant 1,1$ of \cdots with lave μ
Proof: Set $\left.F_{\mu}(x)=\mu(3-\infty, x]\right)$ for $x \in \mathbb{R}$ and $F_{\mu}^{-1}(y)=\inf \left\{x \in \mathbb{R}: F_{\mu}(x) \geqslant y\right\}$ for $y \in[0,1]$. Then, as in the Lehesgre-Stieltjes construchon reurarsly seen, the r.v. $Z_{i}=F_{\mu}^{-1}\left(L_{i}\right)$ have law μ, and are II by the composition principle

