Chapter 4: Part 1, Conditional Probability theory, ETH expectation

Outline: 15 the disorde setting

- 2) Definition and frost properties
- 3) Non-regalise r.v.
- 4) Convergence theorems
- 5) Some useful properties
- 6) Conditional density functions

Intuitively speaking, the goal is to see how the knowledge of information Cie a o-field modifies probability measures. Here we shall defore the conditional expectation of raudom variables given a o-freld.

1) The descrete setting

We first condition with respect to can event. Let (I, A, B) be a probability space and BE A with B(B) >0. We can define B(·1B) the so-called conditional probability given B by RA(B)= $\frac{B(A\cap B)}{B(B)}$ for every AER

Similarly, for XEL1, we define E[X(B]= E[X 1B]

<u>Interpretation</u>: it is the overage value of x when B occurs.

The notation E[XIB] comes from the following fact:

Serma let $X: (2, 7) \to \mathbb{R}_+$ be a random variable. Its expectation with respect to $B(\cdot \mid B)$ is $E[X \mid B]$.

If we set B(A) = B(A)B for $A \in \mathbb{R}$, the expectation of X with respect to $B(\cdot |B)$ is by definition the integral of X with respect to $B(\cdot |B)$.

Proof We show that $S_2 \times (w) \mathcal{P}(dw) \stackrel{(w)}{=} \mathcal{P}(g)$

Step 1 for $X = 1_A$, $S_{\Sigma} 1_A(w) \tilde{\mathcal{P}}(dw) = \tilde{\mathcal{P}}(A) = \underline{\mathcal{P}}(A \cap B)$ which is $\underline{\mathcal{F}}[1_A 1_B]$

Step 2 By linearity (8) holds for every simple random variable (a r.v. Talning a finite number of values

Shep? Let $0 \le X_n / X$ with X_n Simple. Then $S_2 \times_n (\omega) \mathcal{B}(d\omega) = \mathbb{E}[X_n \mathbb{1}_{B}]$ $S_2 \times_n (\omega) \mathcal{B}(d\omega) = \mathbb{E}[X_n \mathbb{1}_{B}]$ by manotone convergence (funce) $\mathcal{B}(\mathcal{B})$

(W.B. Proof not done during the lecture)

We shall now condition with respect to a discrete random variable. Now let $y: \mathbb{R} \to \mathbb{E}$ be a now with \mathbb{E} coventable. We want to define the conditional expectation of X given y. From before, we have $\mathbb{E}[X \mid y=y] = \mathbb{E}[X \mid y=y]$ for every y such that $\mathbb{B}(y=y) > 0$.

Thus, we naturally set: E[X[Y]=Y[Y]] where $y:E\to\mathbb{R}$ is defined by $y[y]=\sum E[X[Y=y]]$ if B[Y=y]>0

In other words AIXIVI is a random variable defined by

 $\mathbb{E}[X|Y](\omega) = \varphi(Y(\omega)).$

1) the notation II[x(w) 1x(w)] makes no sense.

The value of $\varphi(y)$ when $\mathcal{B}(y=y)=0$ is orbitrary: it influences the definition of $\mathcal{E}[X(y)]$ only on e O probability set, the set $\{w\in \mathcal{X}: y(w)\in E'\}$ with $E'=\{y\in E: \mathcal{D}(y=y)=0\}$.

More generally, conditional expectations will always be defined up to O probability sots

Observe that E[XIY] is a riv which is o Cy) measurable, since it is a Junction of y

END OF LECTURE 14

Example (dia toss) Take $-2=\xi 1, --,63$ with $8(\xi w_3) = \frac{1}{6}$ for wer. Set $\chi(w) = \omega$ and $\chi(w) = \xi_0$ if we even Then $\pm [\chi(y)](w) = \xi_0$ if $\psi \in \{1,3,5\}$

<u>Denna</u> We have:

1) E [[E CX 1 Y]] < E C IN], SO E [X 1 Y] & L

2) Y r.v Z which is o-Cy)-measurable and bounded, E[ZX]=E[Z E[X1Y]]
(We take 2 bounded to ensure integralsibly)

Posef 1) We have
$$\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X|Y=y] [\mathbb{E}[X|Y=y]] = \mathbb{E}[X|Y=y]] = \mathbb{E}[X|Y=y]] = \mathbb{E}[X|Y=y]] = \mathbb{E}[X|Y=y]] = \mathbb{E}[X|Y=y]$$

2) By the Doob-Dynden lenner we can write $\mathbb{E}[X|Y] = \mathbb{E}[X|Y]$
 $\mathbb{E}[X|Y] = \mathbb{E}[X|Y] = \mathbb{E}[X|Y] = \mathbb{E}[X|Y=y] = \mathbb{E}[X|Y=y]$
 $\mathbb{E}[X|Y] = \mathbb{E}[X|Y] = \mathbb{E}[X|Y] = \mathbb{E}[X|Y=y] = \mathbb{E}[X|Y=y]$
 $\mathbb{E}[X|Y=y] = \mathbb{E}[X|Y=y]$

Which is
$$\mathbb{E}[X \underset{y \in \mathcal{E}}{\mathbb{E}} F(y) 1_{y=y}] = \mathbb{E}[X F(y)]$$
 because a.s. $\underset{y \in \mathcal{E}}{\mathbb{E}} F(y) 1_{y=y} = F(y)$.

It trues out that this property combe used to define conditional expectations in a general setting

2) Definition and first properties

Let (T, K,B) be a probability space. IS ACK Is a o-field, we write X6 L1(JZ,A,B) if

- · $\chi:(\mathcal{R},\mathcal{A})\to \mathcal{CR},\mathcal{BCR}/\mathcal{CR}/\mathcal{CR}$ is we osmable
- · BIIXIZED

Theorem Fix $X \in L^1(\mathcal{R}, \mathcal{R}, \mathcal{P})$. Let $\mathcal{R} \subset \mathcal{R}$ be a only field. Then there exists a random variable X' with $(\mathcal{R}, \mathcal{R}, \mathcal{R}, \mathcal{P})$

@ For every r.V Z, R measurable and bounded, F[ZX] = E[ZX']

Moreover, if X" is enother such rendom variable, then X'=x"a.s.

We denote by EIXIAJ any such reendom variable, called a version of the conditional expectation of X given A.

Properly @ 15 called the "characteristic property of conditional expectation"

We make some observation before the proof (assume for the moment that the theorem is true)

Remarks. IE[XIA] is an A-measurable random, uniquely defined up to zero probability events. In practice, thus is transparent become we counter only expectation of IE[XIA] or its almost some properties. For this reason, we obtain say that "IE[XIA] is the conditional expectation of X given A"

· By interpreting Et 2(x-x')] = 0 by (Z, X-ETXA) = 0, we can interpret E[X(A)] as the "projection" of X onto A-nearmable Junctions. This will be made regardle when $X \in L^2$

Motation · For BER, we define $P(B(A)= IEIL_B[A]: (+ is an A-wearmable n.v. (defined e.s.))$ • If $Y:(P_1,P_1)\to (E,E)$ is a n.v., we define IEIX[Y]=IEIX[O(Y)](here X is always IR-valued integrable, but Y is not recessarily real-valued)

Remaik

Recall the Doob-Dynhin leuma: If y is R'-valued, then a o (y) measurable function is of the form & (y) with of measurable. (We did the proof for nzi, but the proof is very similar). As a couse quence:

There is a measurable fundion $\psi: \mathbb{R}^n \to \mathbb{R}$ such that $\mathbb{H}[X|Y] = \psi(Y)$

• If $\varphi: \mathbb{R} \to \mathbb{R}$ is a measurable function such that $\text{EE}[\varphi(y)] < \infty$ and for every g measurable bounded $\text{EE}[X] = \text{EE}[\varphi(y)] + (Y) = \text{EE}[Y] + (Y) = (Y)$

Remark the definition is consistent with what we saw in the disorder case. For example, is U is Italied, let's find IF [XIU]. By the Doob-Dynkin laune, IF[XIU]=Jlu and we want to find f. Taking Z= I u=n gives IF[XIu=n]= IF[g(L)] = IF[g(L)] = IF[g(N)] = IF[g(N)] when G(V=n) > 0.

Simple projecties of conditional expectation Take XELI(RF,B) and let P-CF be a o-field.

DIFT ETXIA] = IETX] (very very useful)

2 E[x184,23]=E[x]

(3) If X is A-moosurable, E[XIA] = X. In perticular, we always have E[XIF] = X.

9 X - EL X IA) is live or

 $(5) \times 30 \Rightarrow \mathbb{E}[X(A) 30. As a consequence, X_1 > X_2 \Rightarrow \mathbb{E}[X_1(A) > \mathbb{E}[X_2(A)].$

6 IE[XIA] SE[IXIA]

MB: In every statement, the "almost sure" is implicit (secal that conditional expectations are defined uniquely almost surely)

(100f 1) Just take 2= 15 in the characteristic property

3 Follows from uniqueners: X then setisfres O and @

(A) IS X1, X2 EL'(1, K, S), X= X(E[X, IA] + P(EL X2|A] sochisfies

for a very Z: R > Rs, A measurable, bounded, E[XZ] = E[(dx, + pXz)Z].

So E[aX,+bXz|A] = aE[Xz|A] + b E[Xz|A]

S Fix E>O. Take Z = I

E[XiA] <- E, A-weasurable. Then

O \(\in E[XiA] \) <- \(\in E[XiA] \)

END OF LECTURE 45

Tool of the theorem

Uniqueness Assure that x' and x'' satisfy \emptyset and \emptyset above. Take $Z= \mathbf{1}_{\xi x'>x''\xi}$, f-meanwake. Then $\mathrm{E}\Gamma(x'-x'')\mathbf{1}_{x'>x''}]=\mathrm{E}\Gamma x'\mathbf{1}_{x'>x''}]-\mathrm{E}[x''\mathbf{1}_{x'>x''}]=\mathrm{E}\Gamma x'\mathbf{1}_{x'>x''}]-\mathrm{E}[x'\mathbf{1}_{x'>x''}]-\mathrm{E}[x'\mathbf{1}_{x'>x''}]=0$ But a-s $(x'-x'')\mathbf{1}_{x'>x''}>0$. Thus a-s $(x'-x'')\mathbf{1}_{x'>x''}>0$. Thus $\mathrm{B}(x'>x'')=0$, so a-s $(x'-x'')\mathbf{1}_{x'>x''}>0$. By symplety, $(x'')\leq (x'-x'')\mathbf{1}_{x'>x''}>0$.

existence There are essentially two approaches using results from measure theory: one with Radon-Nibodym, one with Hilbert L2 spaces. We present the second approach and unduline in blue Jocks from measure theory that we do not prove.

Step 1: As some $X \in L^2(\mathcal{R}, R, B)$. We can equip $L^2(\mathcal{R}, R, B)$ with a scalar product: for $Y, Z \in L^2(\mathcal{R}, R, B)$, we set $(YZ) = H \Gamma YZ \}$, so that the norm $|V| = (Y|Y)^2 = (Y|Y)$ defines a normal vector space (here we identify two r.v which are equal as.), which is complete: $L^2(\mathcal{R}, R, B)$ is a Hilbert space. Then $L^2(\mathcal{R}, A, B)$ is a closed subset of $L^2(\mathcal{R}, R, B)$ so we can counider the orthogonal projection $X' \circ f X$ on $L^2(\mathcal{R}, R, B)$ characterized by the feet that $Y \not\subseteq L^2(\mathcal{R}, A, B)$, $(X - X' \mid Z) = 0$, which implies

IFIXZ]= IFIX/Z], and gives the result (Since 2 to meanwho, bounded implies ZE L2(12,18,18)

Step2: Assume $X \in L^2(\mathcal{R}, \mathcal{A}, \mathbb{P})$ and $X \geqslant 0$. We use a bruncation argument: for $n \geqslant 1$, set $X_n = X \perp_{X \leq n} \in L^2(\mathcal{R}, \mathcal{A}, \mathbb{N})$. Set $X_n = \mathbb{E}[X_n | \mathcal{A}]$. Since $X_n \leq X_n + 1$ we have $X'_n \leq X_{n+1}$ a.s. by properly \mathbb{O} above. By monotonisty, we can define $X'_n = \lim_{n \to \infty} X_n = \lim_{n \to \infty$

3) Conditional expectation of van-regative .v.

We can actually define conditional expectation for r.v in IO, 203 without integrability conditions

Theorem Fix a r.v × IO,203-valued. Let ACK be a o-field. Then there exists a random variable X' with

O X'6IO,203, X' is A measurable

② For every r.v Z, R measurable and ZO, [F[ZX]=E[ZX']

Moreover, if x" is enother such rendom variable, Ahun X'=x"a.s.

We denote by IEIXIAJ any such rundom variable, called a version of the conditional expectation of X given A.

Proof: Existence As in step 2 above, if we define $X_n = X$ $1_{X \le n}$ and $X_n' = F(X_n | AZ)$ X', the a.s limit of $(X_n)_{n \ge 1}$ sectisfies O and O

Uniqueness Assume that X' and X'' serisfy 0 and 0. Then for each 0, by talning $2 = 1 \le x' \le 0 \le x'' \ge 0$ we get

b $P(x' \le a < b \le x'') = F[b \ge] \le F[x'' \ge] = F[x' \ge] \le a B(x' \le a < b \le x'')$ Since a < b, we get $P(x' \le a < b \le x'') = 0$. By taking a countable union ue get $\mathbb{R}(X' \angle X'') = 0$. Thus $\mathbb{R}(X' \geqslant X'') = 1$. By symmetry $\mathbb{R}(X' \leq X'') = 1$, so $\mathbb{R}(X' = X'') = 1$

As for conditional expectations in L', we have the following properties which immediately follow from the definition:

Simple projecties of conditional expectation Take X Egos valued ... and let 170% be a or field.

- O F[x[80,23]= F[x], F[x[R]=x
- @If X is A-moasurable, E[XIA] = X.
- 3 if YEEO,003,060>0, E[ax+by|A]=aE[x1A]+bE[y1A]
- 9 F[F[XIA]] = E[X] (Very very resolut)
- $S \times_{1} \times_{2} \times_{2} = E[\times_{1}(A] \geq E[\times_{2}(A]].$

4) convergence theorems

Theorem Let ACP be a o-field

O [Conditional monotone convergence] Let $(X_n)_{n \ge 0}$ be an increasing sequence of [0,23] ... with $X = \lim_{n \to \infty} 1 \times n$. Then $\mathbb{E}[X_n] \mathbb{A}_3 \nearrow \mathbb{E}[X_n] \mathbb{A}_3$

- (2 [Conditional Fabra] Let CXn1n> be a sequence of copy r.v. Then Et levely Xn [A] < livery E[Xn[A]
- (3) [Conditional dominated convergence] Let CYNIn, be a sequence of integrable r.v. such that
 - × <---> ×
 - · 3/30 inl1 s.E /m/s a.s. |xn| < y

Then FLX, [A] == FLX (A) almost surely and in L^2(R, A, B)

(9) [Conditional Jensen] let $f: \mathbb{R} \to \mathbb{R}_+$ be a convex function (if f'' > 0, f is convex) such that $X + L'(I, \mathbb{R}, \mathbb{R})$ Then $f(\mathbb{E}[X|\mathbb{R}_3]) \leq \mathbb{E}[f(X)|\mathbb{R}_3]$

By heding A = 50,73 we get $f(E[X]) \leq E[f(X)]$ (Tenson inequality) (as usual for conditional expectations, all statements are to be understood almost surely) Proof 1) We know that EEE Xn1A] is 1. Let X' be its limit, A measure ble as a limit of A-measure ble functions.

Then for 2>0 A measurable, E[Xn2] = EE EE[Xn1A] 23, so by monohore convergence we get

EEX2] = EEX2] Thus X' = EEX(A] as

Dobserve that for iznzi

Florf XR [A] S E[Xi[A].

Thus E[inf Xe[A] < inf E[Xe[A].

But enf Xe 1 living Xe, so the result follows from O

3 Apply 10 with 2-xn >0 and 2+xn>0

F[Z/A]-F[X/A] = E[laning (2-Xn)(A] S E[Z(A] - liverap E[Xn/A]

F[2/t] + F[X/A] = F[liming (2+Xn) |A] = F[2/A] + liming F[Xn/A]

Thus IF [X (A] < liwing Et xn (A) < living Et xn (A) < Et x(A) Which gives the as convergence

The L^1 convergence follows from Lowindred convergence, since $|E[X_n|A]| \le E[|X_n|A]| \le E[|X_n|A] \le E[|X_n|A]| \le E[|X_$

 Θ Set $E_g = \{(e_0b) \in \mathbb{R}^2: \forall x \in \mathbb{R}, f(x) \geq 0 \times 16 \}$. Since $g \in \mathbb{R}$ convex,

YZER, f(x)= sup (axtb) (4). In addition, we can find DCEf countable and dense in Ef (44)

Thus F[8(x)(A)=F[sup (axfb)(A) > sup F[axfb(A) = 8(F[x)(A])

(here we need countrability because conditional expectations are only defined a.s.)

Trestification of (x) For $x \in \mathbb{R}$ we clearly have $g(x) > \sup_{(a) \in \mathbb{R}} (ax + b)$. The other inequality comes from the fact that by convexity of g we can $g(x) \in \mathbb{R}$ such that g(x) = ax + b and g(y) > ay + b by g(x) = ax + b.

Trestification of (x) Denote by g(x) = ax + b.

The other inequality comes g(x) = ax + b. The other g(x) = ax + b and g(y) = ay + b. By g(x) = ax + b, and g(x) = ax + b. The other inequality g(x) = ax + b. The other inequality g(x) = ax + b. The other inequality g(x) = ax + b.

The other inequality comes from g(x) = ax + b. The other inequality g(x) = ax + b.

The other inequality g(x) = ax + b and g(x) = ax + b. The other inequality g(x) = ax + b and g(x) = ax + b. The other inequality g(x) = ax + b and g(x) = ax + b. The other inequality g(x) = ax + b and g(x) = ax + b. The other inequality g(x) = ax + b and g(x) = ax + b. The other inequality g(x) = ax + b and g(x) = ax + b. The other inequality g(x) = ax + b and g(x) = ax + b. The other inequality g(x) = ax + b and g(x) = ax + b. The other inequality g(x) = ax + b and g(x) = ax + b and g(x) = ax + b. The other inequality g(x) = ax + b and g(x

then $|p_n-x| \leq |p_n-x_n| + |x_n-x| \leq \frac{1}{N} + d(x_n, E_g) + \epsilon \leq 2\epsilon + d(x_n, E_g)$. But $d(x_n, E_g) \leq |x_n-x| \leq \epsilon$ (because $x \in E_g$), so $|p_n-x| \leq 3\epsilon$.

Remark We often use Jewen's inequality with fix = 1x1 with p>1 and with the 1.1 [X]:

E[IX] SE[IXI] and E[IXIA] SE[IXIIA]

5) Some us Jul properties

The "information contained in A" can be followized out of the conditional expectation. From now on by L' we mean $L'(\mathcal{F}, \mathcal{K}, \mathcal{B})$.

Proposition Let AC 18 be a or field. Let X, y be real-valued no such that X, y = 1902 or X, X y \ 2?

Assume that y is R- weasurable. Then E[y x 1 R] = y E[x 1 R]

Proof If X, YETO, POS and Z ZO is A-measurede, then ZY ZO is A measure ble, so

[FI ZY X] = FI ZY [FI XIA]]

Y [FI XIA] is A-measurable and satisfies the characteristic property of conditional expectation,

so Y [FI XIA] = [FI YXIA]. The proof is similar when X, XY EL'

One has the tower property (restricting information) FNO OF CECTURE

Proposition let (2, CA2 CR be o-fields. Then for X r.v. with X600,000 X EL 1, EL XIA2] [A1] = EL XIA]

Proof let 270 be A, measurable bounded. By reniqueness it is enough to check that

F[ZX] = E[Z E[E[X|Az]|A]]

To this end, unite: E[Z E[E[X|Az]|A,]] = E[Z E[X|Az]]

= E[ZX]

because 2 is also Az be measurable. The proof is similar for X+L2.

Adding Enlegandent information does not change the conditional expectation:

Lemma Let A, Az C K be o-fields and X a r.v which is 600,003 or in 12. If RZLO(OCXI, AI), then ELXIO(AI, AZI) = ELX[A]

Proof: We show that ELICXJ=ELICE(XIO(R)) for every Cin a generating T-system of o(A,Az). Indeed, sine ETX10(A,)] is o(A,Az) measurable, this will imply the result (see Exercise 2 Sheet 8).

We see & A, MAz: A, EA, AzEAzZ, which is a generaling Ti-

system of of ti, Az).

For A, EA, and AZEAZ, E[1_A, NAZ X]=E[1_AZ AA, X] - Ellas Ellas Axi by y = FEIA, FEXIGI] = FEIA. LA, BIXIR,3)

end we get (v)

Corollary IS X44, F[X1Y] = F[X]
(take A = 24,23 and Az = 0(4))

6) Conditional density functions (not covered in class:

Assume that X, y take values in R^m, Rⁿ and that CX, y) has a density: $B_{(X,y)}$ (dxdy) = $g_{(X,y)}$ (x, y) dxdy. Let $g_{(X,y)} = g_{(X,y)}$ (x, y) d = loc a density of Y.

Then for $h: \mathbb{R}^m \to \mathbb{R}_+$ and $g: \mathbb{R}^n \to \mathbb{R}_+$ measurable, we have $\mathbb{E}[h(x)g(y)] = \int_{\mathbb{R}^m \times \mathbb{R}^n} h(x)g(y) f_{(x,y)}(x,y) dxdy$ (transfer theorem)

 $= \int_{\mathbb{R}^n} g(y) \, dy \, dy \, \int_{\mathbb{R}^m} \frac{h(x) \, f_{(X,Y)}(x,y)}{g_{Y}(y)} \, dx$

 $= E[\varphi(y) \varphi(y)]$

With $y(y) = \frac{1}{8y(y)} \int_{\mathbb{R}^m} h(x) f_{(X|Y)}(x|Y) dx$ if $f_{y}(y) > 0$ Thus E[h(X)] IV] = y(y).

We interpret this result by uniting $\text{E}[h(X)] \text{IV}] = \int_{\mathbb{R}^m} h(x) > 2(y) dx$.

Where $\text{P}(y) dx = \frac{1}{8y(y)} f_{(X|Y)} + \frac{1}{8y(y)} + \frac{1}{9} f_{(X|Y)} + \frac{1}{9}$