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Outline : 1) Doob maximal inequalities
2) Martingales bounded in L (PI
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1) Doob maximal irequalities

Theorem (Doob manimal inequalities
① Let (M) be a submartingale.Then for every aso and nx, o :
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② Let (Mn) be a motingale and set Ma = max (Mr1.Then for every aso and .
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Remaks . follows immediately from D : if (Mn) is a martingale,
then (1Mul) is a rubmartingale

· The inequality (a) just comes from Mu1smanMr, as
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Since Mut < mass Mot ,
the theorem gives a better bound.
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Proof of 0 The idea is to introduce the stopping time T= inf5n30: Mn < a3 with the nual convention info = 0.

We have TIn iffma Mr4, a
, so a 19 (max Mm, 2) = * a ((T= k) = * #La
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But T= R implies MRc, a
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But (Mn) is a rubmanhingale,
so EIMulER]<, Mr
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= R is Ermeanable (T is a stopping time
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