Chapter 8: A glimpse on statistical theory (not part of the exam)

Igor Kortchemstr Probality theory, Autremn 2023 ETH

1) Estimation 2) Confidence intervals Out live:

Until now, we have studied c.i.d. random verialdes with known distributions. In statistical theory the situation is different: we observe a sequence of values which we assure to be the realization of an i.i.d. sequence of r.v (colled a sample) but with relevant law. Using the sample, we would like to estimate the unknown law, or decide to accept or reject a hypothesis that concerns it.

1) Estimation

In practice, it often happens that the remain have belongs to a certain family of probability measures depending on a parameter I. For example, a company would like to commercialize a new product, and we would like to estimate the proportion $\theta \in tqr$) of the population susceptible of buying the product.

Defenition A statistical model is a space I equipped with a o-field & and a family of probability meanines (Po) . We say that @ is the space of perameters.

Definition A sample of sizen is a sequence of realizations X1(w)1-., Xn(w) of random variables X11..., Xn

In practice, we often have data, which is assumed to be a sample of iid r.v. X1,..., Xn runder Po, with I renknown.

Definition. An estimator is e function d with values in the space of parameters () which depends on the sample, i.e. of the form $d(x_1, ..., x_n)$ It is without bias when 4060, $E_0 [d(x_1, ..., x_n)] = 0$ (here F_0 denotes expectation with respect to F_0) It is strongly counstant if 4060 render P_0 , $d(x_1, ..., x_n) \stackrel{a.s}{\xrightarrow{n \to \infty}} 0$ END OF LECTURE 27

Example In the statistical model $D = DO_1 G$ and P_0 is the Bunoulli law of parameter D_1 $d(X_{11}..., X_n) = \frac{X_1 + ... + X_n}{n}$ is an unbiased estimator, strongly couristent (by the law of large numbers), called the emperical mean, and often denoted by X_n .

2) Confidence intervals

In practice, we do not just give a numerical estimation of a parameter, but a "small" interval in which the parameter should be

In statistics, we use the Aerun "confidence term". More precisely, let us courider a statistical model ($P_0, \theta \in \Theta$) and a sample $(X_{11}, ..., X_n)$ of size n.

We fix a confidence level 1-d, where $d \in (0,1)$ represents the probability of error that we tolerate. A confidence interval of level 1-d is an interval $T(X_{1,...,X_{n}}) = Ea(X_{1,...,X_{n}})$ such that $P_{\theta}(\theta \in T(X_{1,...,X_{n}})) > HA$ for every $\theta \in \Theta$.

Of course, for a given size of a sample, we hope for a high level of confridence and a small interval (these two conditions being antagonistic)

Convertely, one often steels with an estimator $d(X_{1,...,},X_n)$ et one tries to measure the "enor" of this estimator to find an interval anound $d(X_{1,...,},X_n)$ which has the desired level of confidence.

Example In the statistical model where
$$P = 10(3)$$
 and P_{2} Solver the Dernoulli have of parameter $P_{1} = \frac{N_{1} + \dots + N_{n}}{N_{n}}$, the Directly with Table for a problem of gives:
 $P_{0}(1X_{n}-1) \ge 1 \le \frac{V_{0}(X_{0})}{e^{2}} = \frac{1}{N_{0}^{2}} \le \frac{1}{1+e^{2}}$.
Thus, if the confidence based 1-d is Strick, we used $\frac{1}{\sqrt{n_{0}}} \le d$ and then
 $(M) [X_{n} - \frac{1}{\sqrt{N_{0}}}]$, $X_{n} + \frac{1}{2\sqrt{N_{0}}}]$ is a confidence cuberrie of kinel 1-d.
We can also use the Central Limit Theorem to build asymptotic confidence hall
i.e. where have is asymptotically 1-d. When $N \to \infty$: Voce, have $P(100(01) \log 1) = 4$.
Bet as just give the varia view:
 $IS \ge n - \frac{M}{2} + N(n(1), klow, ku > 2)$ we have $P(12n) > 0$. $P(100(01) \log 1) = 4$.
We then there q_{1} such that $P(1N(0,01) \log 1 = n)$ (for every for $s = 0.3$
 $q_{1} \le 1.36$).
Then $P(-q_{1} \le 2n \le q_{1}) \longrightarrow 1-d$; which allows to build
expression $P(1 - q_{1} \le 2n \le q_{1}) \longrightarrow 1-d$; which allows to build
expression $P(1 - q_{1} \le 2n \le q_{1}) \longrightarrow 1-d$; which allows to build
expression $P(1 - q_{1} \le 2n \le q_{1}) \longrightarrow 1-d$; which allows to build
expression $P(1 - q_{1} \le 2n \le q_{1}) \longrightarrow 1-d$; which allows to build
expression $P(1 - q_{1} \le 2n \le q_{1}) \longrightarrow 1-d$; which allows to build
expression $P(1 - q_{2} \le 2n \le q_{1}) \longrightarrow 1-d$; which allows to build
expression $P(1 - q_{2} \le 2n \le q_{1}) \longrightarrow 1-d$; which allows to build
 $P(1 + q_{1}) = 1-d$
 $P(1 - q_{2}) \le 1-q_{1}$ and $P(1 - q_{2}) \ge 1-q_{1}$
 $P(1 - q_{2}) \le 1-q_{1}$ and $P(1 - q_{2}) \ge 1-q_{1}$
 $P(1 - q_{2}) \le 1-q_{2}$
 $P(1 - q_{2}) \le 1-q_{1}$
 $P(1 - q_{2}) \le 1-q_{1}$
 $P(1 - q_{2}) \le 1-q_{1}$
 $P(1 - q_{2}) \le 1-q_{2}$
 $P(1 -$

 \Im