# Mathematical Foundations for Finance 

## Exercise sheet 1

Exercise 1.1 Let $\Omega$ be a non-empty set.
(a) Suppose that $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ are $\sigma$-algebras on $\Omega$. Prove that $\mathcal{F}_{1} \cap \mathcal{F}_{2}$ is also a $\sigma$-algebra on $\Omega$.
(b) Let $\mathcal{A}$ be a family of subsets of $\Omega$. Show that there is a (clearly unique) minimal $\sigma$-algebra $\sigma(\mathcal{A})$ containing $\mathcal{A}$. Here minimality is with respect to inclusion: if $\mathcal{F}$ is a $\sigma$-algebra with $\mathcal{A} \subseteq \mathcal{F}$, then $\sigma(\mathcal{A}) \subseteq \mathcal{F}$.
(c) Suppose that $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ are $\sigma$-algebras on $\Omega$. Show by example that $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ may fail to be a $\sigma$-algebra.
Hint: You can consider two $\sigma$-algebras $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ on $\Omega:=\{1,2,3\}$.

## Solution 1.1

(a) We check the requirements for a $\sigma$-algebra:

- $\Omega \in \mathcal{F}_{1} \cap \mathcal{F}_{2}$ because $\Omega \in \mathcal{F}_{i}$ for all $i \in\{1,2\}$;
- if $A \in \mathcal{F}_{1} \cap \mathcal{F}_{2}$, then $A \in \mathcal{F}_{i}$, and hence $A^{c} \in \mathcal{F}_{i}$ for all $i \in\{1,2\}$. It follows that $A^{c} \in \mathcal{F}_{1} \cap \mathcal{F}_{2}$;
- if $A_{n} \in \mathcal{F}_{1} \cap \mathcal{F}_{2}, n \in \mathbb{N}$, then $A_{n} \in \mathcal{F}_{i}$ for all $i \in\{1,2\}$. Hence, $\cup_{n \in \mathbb{N}} A_{n} \in \mathcal{F}_{i}$ for all $i \in\{1,2\}$, and thus $\cup_{n \in \mathbb{N}} A_{n} \in \mathcal{F}_{1} \cap \mathcal{F}_{2}$.
(b) Define

$$
\sigma(\mathcal{A}):=\bigcap_{\substack{\mathcal{F} \\ \sigma \text {-algebra } \\ \mathcal{F} \supseteq \mathcal{A}}} \mathcal{F}
$$

Notice that the above intersection is over a non-empty family of $\sigma$-algebras, since the power set on $\Omega$ is a $\sigma$-algebra that contains $\mathcal{A}$. Then, the argument in part (a) can be extended to the intersection of an arbitrary family of $\sigma$-algebras, proving that $\sigma(\mathcal{A})$ is a $\sigma$-algebra, and of course $\sigma(\mathcal{A}) \supseteq \mathcal{A}$. The uniqueness of such a $\sigma$-algebra follows immediately from its construction.
(c) Let $\Omega:=\{1,2,3\}$, and consider the $\sigma$-algebras

$$
\mathcal{F}_{1}:=\sigma(\{\{1\}\})=\{\emptyset,\{1,2,3\},\{1\},\{2,3\}\} \text { and } \mathcal{F}_{2}:=\sigma(\{\{2\}\})=\{\emptyset,\{1,2,3\},\{2\},\{1,3\}\}
$$

It is straightforward to verify that the union $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ contains both $\{1\}$ and $\{2\}$, yet does not contain $\{1\} \cup\{2\}=\{1,2\}$. Hence, $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is not a $\sigma$-algebra.

Exercise 1.2 Consider a probability space $(\Omega, \mathcal{F}, P)$. A $\sigma$-algebra $\mathcal{F}_{0} \subseteq \mathcal{F}$ is said to be $P$-trivial if $P[A] \in\{0,1\}$ for all $A \in \mathcal{F}_{0}$. Prove that $\mathcal{F}_{0}$ is $P$-trivial if and only if every $\mathcal{F}_{0}$-measurable random variable $X: \Omega \rightarrow \mathbb{R}$ is $P$-a.s. constant.

Solution 1.2 Suppose that $\mathcal{F}_{0}$ is $P$-trivial, and consider an $\mathcal{F}_{0}$-measurable random variable $X: \Omega \rightarrow \mathbb{R}$. By definition we have that $\{X \leqslant a\} \in \mathcal{F}_{0}$ for all $a \in \mathbb{R}$, and thus $P[X \leqslant a] \in\{0,1\}$. Define

$$
c:=\inf \{a \in \mathbb{R}: P[X \leqslant a]=1\}
$$

We first prove that $c \in \mathbb{R}$. Since $\{X \leqslant n\} \uparrow\{X \in \mathbb{R}\}$, then $P[X \leqslant n] \uparrow P[X \in \mathbb{R}]=1$, and so the above infimum is over a nonempty set (i.e. $c \neq \infty$ ). Then, if $c=-\infty$, we have that $P[X \leqslant-n]=1$ for all $n \in \mathbb{N}$, and from the fact that $\{X \leqslant-n\} \downarrow \varnothing$, it follows that $1=\lim _{n \rightarrow \infty} P[X \leqslant-n]=P[\varnothing]=0$. We get the desired contradiction.
By the definition of the infimum, we have that $P\left[X \leqslant c+\frac{1}{n}\right]=1$ and $P\left[X \leqslant c-\frac{1}{n}\right]=0$ for all $n \in \mathbb{N}$. Since $\left\{X \leqslant c+\frac{1}{n}\right\} \downarrow\{X \leqslant c\}$ and $\left\{X \leqslant c-\frac{1}{n}\right\} \uparrow\{X<c\}$, we get that

$$
P[X \leqslant c]=\lim _{n \rightarrow \infty} P\left[X \leqslant c+\frac{1}{n}\right]=1, \text { and } P[X<c]=\lim _{n \rightarrow \infty} P\left[X \leqslant c-\frac{1}{n}\right]=0
$$

Hence, we conclude that $X=c P$-a.s. because

$$
P[X=c]=P[X \leqslant c]-P[X<c]=1
$$

Conversely, suppose that every $\mathcal{F}_{0}$-measurable random variable is $P$-a.s. constant, and take $A \in \mathcal{F}_{0}$. Then,

$$
\mathbb{1}_{A}= \begin{cases}1 & \text { if } \omega \in A \\ 0 & \text { if } \omega \in A^{c}\end{cases}
$$

is an $\mathcal{F}_{0}$-measurable random variable, and hence must be $P$-a.s. constant. It follows immediately that either $P\left[\mathbb{1}_{A}=1\right]=P[A]=1$ or $P\left[\mathbb{1}_{A}=0\right]=P\left[A^{c}\right]=1$, so that $P[A] \in\{0,1\}$. This completes the proof.

Exercise 1.3 Let $(\Omega, \mathcal{F}, P)$ be a probability space, $X$ an integrable random variable and $\mathcal{G} \subseteq \mathcal{F}$ a $\sigma$-algebra. Then, the $P$-a.s. unique random variable $Z$ such that

- $Z$ is $\mathcal{G}$-measurable and integrable,
- $E\left[X \mathbb{1}_{A}\right]=E\left[Z \mathbb{1}_{A}\right]$ for all $A \in \mathcal{G}$,
is called the conditional expectation of $X$ given $\mathcal{G}$ and is denoted by $E[X \mid \mathcal{G}]$.
[This is the formal definition of the conditional expectation of $X$ given $\mathcal{G}$; see Section 8.2 in the lecture notes.]
(a) Show that if $X$ is $\mathcal{G}$-measurable, then $E[X \mid \mathcal{G}]=X P$-a.s.
(b) Show that $E[E[X \mid \mathcal{G}]]=E[X]$.
(c) Show that if $P[A] \in\{0,1\}$ for all $A \in \mathcal{G}$ (that is, if $\mathcal{G}$ is $P$-trivial), then $E[X \mid \mathcal{G}]=E[X]$ $P$-a.s.
(d) Consider an integrable random variable $Y$ on $(\Omega, \mathcal{F}, P)$, and some constants $a, b \in \mathbb{R}$. Show that $E[a X+b Y \mid \mathcal{G}]=a E[X \mid \mathcal{G}]+b E[Y \mid \mathcal{G}] P$-a.s.
(e) Suppose that $\mathcal{G}$ is generated by a finite partition of $\Omega$, i.e., there exists a collection $\left(A_{i}\right)_{i=1, \ldots, n}$ of sets $A_{i} \in \mathcal{F}$ such that $\bigcup_{i=1}^{n} A_{i}=\Omega, A_{i} \cap A_{j}=\emptyset$ for $i \neq j$ and $\mathcal{G}=\sigma\left(A_{1}, \ldots, A_{n}\right)$. Additionally, assume that $P\left[A_{i}\right]>0$ for all $i=1, \ldots, n$. Show that

$$
E[X \mid \mathcal{G}]=\sum_{i=1}^{n} E\left[X \mid A_{i}\right] \mathbb{1}_{A_{i}} P \text {-a.s. }
$$

This says that the conditional expectation of a random variable given a finitely generated $\sigma$ algebra is a piecewise constant function with the constants given by the elementary conditional expectations given the sets of the generating partition.
[This is a very useful property when one conditions on a finitely generated $\sigma$-algebra, as for instance in the multinomial model.]
Hint 1: Recall that $E\left[X \mid A_{i}\right]=E\left[X \mathbb{1}_{A_{i}}\right] / P\left[A_{i}\right]$ and try to write $X$ as a sum of random variables each of which only takes non-zero values on a single $A_{i}$.
Hint 2: Check that any set $A \in \mathcal{G}$ has the form $\cup_{j \in J} A_{j}$ for some $J \subseteq\{1, \ldots, n\}$.

## Solution 1.3

(a) $X$ is $\mathcal{G}$-measurable and integrable by assumption, so the first requirement in the definition of conditional expectation is satisfied for $Z=X$. Moreover, we clearly have that $E\left[X \mathbb{1}_{A}\right]=$ $E\left[X \mathbb{1}_{A}\right]$ for all $A \in \mathcal{G}$, hence $E[X \mid \mathcal{G}]=X P$-a.s.
(b) In the definition of the conditional expectation, set $A=\Omega$. Then, we obtain that $E[E[X \mid \mathcal{G}]]=$ $E\left[E[X \mid \mathcal{G}] \mathbb{1}_{\Omega}\right]=E\left[X \mathbb{1}_{\Omega}\right]=E[X]$.
(c) Since $|E[X]| \leq E[|X|]$ by Jensen's inequality and $E[|X|]<\infty$ by the assumption that $X$ is integrable, we have that $E[X]$ is integrable as well. $E[X]$ is also trivially $\mathcal{G}$-measurable since it is a constant random variable. Moreover, in this setting, $A \in \mathcal{G}$ only if $P[A]=0$ or $P[A]=1$. Noting that

$$
\begin{array}{ll}
E\left[X \mathbb{1}_{A}\right]=0=E\left[E[X] \mathbb{1}_{A}\right], & \forall A \in \mathcal{G} \text { such that } P[A]=0 \\
E\left[X \mathbb{1}_{A}\right]=E[X]=E\left[E[X] \mathbb{1}_{A}\right], & \forall A \in \mathcal{G} \text { such that } P[A]=1,
\end{array}
$$

we obtain $E[X \mid \mathcal{G}]=E[X] P$-a.s.
(d) By the definition of the conditional expectation, we have that $E[X \mid \mathcal{G}]$ and $E[Y \mid \mathcal{G}]$ are $\mathcal{G}$-measurable and integrable; hence, the same holds for $a E[X \mid \mathcal{G}]+b E[Y \mid \mathcal{G}]$. Choosing some $A \in \mathcal{G}$, we can compute that

$$
\begin{aligned}
E\left[(a E[X \mid \mathcal{G}]+b E[Y \mid \mathcal{G}]) \mathbb{1}_{A}\right] & =a E\left[E[X \mid \mathcal{G}] \mathbb{1}_{A}\right]+b E\left[E[Y \mid \mathcal{G}] \mathbb{1}_{A}\right] \\
& =a E\left[X \mathbb{1}_{A}\right]+b E\left[Y \mathbb{1}_{A}\right]=E\left[(a X+b Y) \mathbb{1}_{A}\right]
\end{aligned}
$$

where the first equality uses the linearity of the (classical) expectation and the second uses the definition of $E[X \mid \mathcal{G}]$ and $E[Y \mid \mathcal{G}]$. By the arbitrariness of $A \in \mathcal{G}$, we can conclude that $E[a X+b Y \mid \mathcal{G}]=a E[X \mid \mathcal{G}]+b E[Y \mid \mathcal{G}] P$-a.s.
(e) First recall that $E\left[X \mid A_{i}\right]=E\left[X \mathbb{1}_{A_{i}}\right] / P\left[A_{i}\right]$. Using that

$$
X=X \mathbb{1}_{\Omega}=X \mathbb{1}_{\cup_{i=1}^{n} A_{i}}=X \sum_{i=1}^{n} \mathbb{1}_{A_{i}}=\sum_{i=1}^{n} X \mathbb{1}_{A_{i}}
$$

where the third equality holds because $A_{i}$ are pairwise disjoint, we get by part (d) that

$$
E[X \mid \mathcal{G}]=\sum_{i=1}^{n} E\left[X \mathbb{1}_{A_{i}} \mid \mathcal{G}\right] P \text {-a.s. }
$$

and hence we only have to show that $E\left[X \mathbb{1}_{A_{i}} \mid \mathcal{G}\right]=\frac{E\left[X \mathbb{1}_{A_{i}}\right]}{P\left[A_{i}\right]} \mathbb{1}_{A_{i}} P$-a.s. for each $i \in\{1, \ldots, n\}$. Since $A_{i} \in \mathcal{G}$ and $E\left[X \mid A_{i}\right]=E\left[X \mathbb{1}_{A_{i}}\right] / P\left[A_{i}\right] \in \mathbb{R}$, we already know that $E\left[X \mid A_{i}\right] \mathbb{1}_{A_{i}}$ is $\mathcal{G}$-measurable and integrable. One can verify that the family of sets $A=\bigcup_{j \in J} A_{j}$ for $J \in 2^{\{1, \ldots, n\}}$ (the power set of $\{1, \ldots, n\}$ ) forms a $\sigma$-field. Let us denote this $\sigma$-field by $\tilde{\mathcal{G}}$. Since we clearly have $A_{i} \in \tilde{\mathcal{G}}$ for all $i \in\{1, \ldots, n\}$, we get that $\tilde{\mathcal{G}} \supseteq \mathcal{G}$, which for any $A \in \mathcal{G}$ implies that $A=\bigcup_{j \in J} A_{j}$ for some $J \subseteq\{1, \ldots, n\}$. For any such $A \in \mathcal{G}$, we have that

$$
\mathbb{1}_{A_{i}} \mathbb{1}_{A}= \begin{cases}\mathbb{1}_{A_{i}} & \text { if } i \in J \\ 0 & \text { else }\end{cases}
$$

Hence, we can then compute

$$
E\left[\left(\frac{E\left[X \mathbb{1}_{A_{i}}\right]}{P\left[A_{i}\right]} \mathbb{1}_{A_{i}}\right) \mathbb{1}_{A}\right]= \begin{cases}E\left[X \mathbb{1}_{A_{i}}\right] \frac{P\left[A_{i}\right]}{P\left[A_{i}\right]}=E\left[X \mathbb{1}_{A_{i}}\right] & \text { if } i \in J \\ 0 & \text { else }\end{cases}
$$

On the other hand, we have that

$$
E\left[X \mathbb{1}_{A_{i}} \mathbb{1}_{A}\right]= \begin{cases}E\left[X \mathbb{1}_{A_{i}}\right] & \text { if } i \in J \\ 0 & \text { else }\end{cases}
$$

This shows that $E\left[X \mathbb{1}_{A_{i}} \mid \mathcal{G}\right]=\frac{E\left[X \mathbb{1}_{A_{i}}\right]}{P\left[A_{i}\right]} \mathbb{1}_{A_{i}} P$-a.s. and concludes the proof.
Exercise 1.4 Let $(\Omega, \mathcal{F}, P)$ be the probability space with $\Omega=\{U U, U D, D D, D U\}, \mathcal{F}=2^{\Omega}$, and $P$ defined by $P[\omega]=1 / 4$ for all $\omega \in \Omega$ (so $P$ is the uniform probability measure on $\Omega$ ). Consider the random variables $Y_{1}, Y_{2}: \Omega \rightarrow \mathbb{R}$ that are given by $Y_{1}(U U)=Y_{1}(U D)=2, Y_{1}(D D)=Y_{1}(D U)=$ $1 / 2, Y_{2}(U U)=Y_{2}(D U)=2$, and $Y_{2}(D D)=Y_{2}(U D)=1 / 2$. Define the process $X=\left(X_{k}\right)_{k=0,1,2}$ by $X_{0}=8$, and $X_{k}=X_{0} \prod_{i=1}^{k} Y_{i}$ for $k=1,2$.
(a) Show that, for any continuous function $h: \mathbb{R} \rightarrow \mathbb{R}$, the composition $h\left(X_{1}\right)$ is $\sigma\left(X_{1}\right)$-measurable.
(b) Draw a tree to illustrate the possible evolutions of the process $X$ from time 0 to time 2, and label the corresponding transition probabilities and probabilities.
(c) Write down the $\sigma$-algebras (i.e. give all their sets) defined by $\mathcal{F}_{k}=\sigma\left(X_{i}: 0 \leqslant i \leqslant k\right)$ and $\mathcal{G}_{k}=\sigma\left(X_{k}\right)$ for $k=0,1,2$.
(d) Consider the collections of $\sigma$-algebras $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k=0,1,2}$ and $\mathbb{G}=\left(\mathcal{G}_{k}\right)_{k=0,1,2}$. Do these form filtrations on $(\Omega, \mathcal{F})$ ? Why or why not?
(e) If they are indeed filtrations, is $X$ adapted to $\mathbb{F}$ or $\mathbb{G}$ ?
(f) Give financial interpretations of $X, \mathbb{F}$ and $\mathbb{G}$.

## Solution 1.4

(a) It is sufficient to show that $\left\{h\left(X_{1}\right) \leq c\right\} \in \sigma\left(X_{1}\right)$ for all $c \in \mathbb{R}$. We write

$$
\left\{h\left(X_{1}\right) \leq c\right\}=\left(h\left(X_{1}\right)\right)^{-1}(-\infty, c]=X_{1}^{-1}\left(h^{-1}(-\infty, c]\right)
$$

Since $(-\infty, c]$ is closed and $h$ is continuous, then $h^{-1}(-\infty, c]$ is also closed, and hence $h^{-1}(-\infty, c] \in \mathcal{B}(\mathbb{R})$. Then, $X_{1}$ is clearly measurable with respect to $\sigma\left(X_{1}\right)$, and thus we have that $X_{1}^{-1}\left(h^{-1}(-\infty, c]\right) \in \sigma\left(X_{1}\right)$, completing the proof.
(b) The tree with the transition probabilities labelled and the one with the probabilities labelled are drawn below.
(c) Since $X_{0}=8$ is a constant, then $\mathcal{F}_{0}=\mathcal{G}_{0}=\sigma\left(X_{0}\right)=\{\varnothing, \Omega\}$. We thus also have $\mathcal{F}_{1}=$ $\sigma\left(X_{0}, X_{1}\right)=\sigma\left(X_{1}\right)=\mathcal{G}_{1}$. Moreover, because $X_{1}$ is either 4 or 16 , and $X_{1}^{-1}(4)=\{D D, D U\}$ and $X_{1}^{-1}(16)=\{U U, U D\}$, we have

$$
\sigma\left(X_{1}\right)=\{\varnothing, \Omega,\{D D, D U\},\{U U, U D\}\}
$$

(since the right hand side above is a $\sigma$-algebra). By the same reasoning, since $X_{2}$ is either 2, 8 , or 32 , and $X_{2}^{-1}(2)=\{D D\}, X_{2}^{-1}(8)=\{D U, U D\}$, and $X_{2}^{-1}(32)=\{U U\}$, we have

$$
\begin{aligned}
\mathcal{G}_{2}= & \left.\sigma\left(X_{2}\right)=\sigma(\{D D\},\{D U, U D\},\{U U\}\}\right) \\
= & \{\varnothing, \Omega,\{D D\},\{D U, U D\},\{U U\},\{D D, D U, U D\},\{D U, U D, U U\} \\
& \{D D, U U\}\}
\end{aligned}
$$

Since $\{D D, D U\},\{U U, U D\} \in \sigma\left(X_{1}\right)$ and $\{D U, U D\},\{D D, U U\} \in \sigma\left(X_{2}\right)$, then by taking intersections we see that $\{D U\},\{U D\} \in \sigma\left(X_{1}, X_{2}\right)$. Since also $\{D D\},\{U U\} \in \sigma\left(X_{2}\right)$, we get

$$
\mathcal{F}_{2}=\sigma\left(X_{0}, X_{1}, X_{2}\right)=2^{\Omega}=\mathcal{F}
$$

Updated: October 4, 2023
(d) By construction, $\mathbb{F}$ is a filtration on $(\Omega, \mathcal{F})$ (of course, this can also be checked directly). Since $\{D D, D U\} \in \mathcal{G}_{1} \backslash \mathcal{G}_{2}$, then $\mathcal{G}_{1} \subsetneq \mathcal{G}_{2}$, and hence $\mathbb{G}$ is not a filtration.
(e) By construction, $X$ is adapted to $\mathbb{F}$. Also, $X_{k}$ is of course $\mathcal{G}_{k}$-measurable for each $k=0,1,2$, but $\mathbb{G}$ is not a filtration.
(f) The process $X$ can be interpreted as the price of a stock that is worth 8 at time zero, and at each period changes by a factor of either $1 / 2$ or 2 .
The filtration $\mathbb{F}$ can be thought of as the cumulative information that the stock price evolution provides us with over time.
The collection $\mathbb{G}$ can be though of as the information we know by only observing the present stock price, but not the past stock prices.


