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Exercise 1.1 Let Ω be a non-empty set.

(a) Suppose that F1 and F2 are σ-algebras on Ω. Prove that F1 ∩ F2 is also a σ-algebra on Ω.

(b) Let A be a family of subsets of Ω. Show that there is a (clearly unique) minimal σ-algebra
σ(A) containing A. Here minimality is with respect to inclusion: if F is a σ-algebra with
A ⊆ F , then σ(A) ⊆ F .

(c) Suppose that F1 and F2 are σ-algebras on Ω. Show by example that F1 ∪ F2 may fail to be
a σ-algebra.
Hint: You can consider two σ-algebras F1 and F2 on Ω := {1, 2, 3}.

Solution 1.1

(a) We check the requirements for a σ-algebra:

• Ω ∈ F1 ∩ F2 because Ω ∈ Fi for all i ∈ {1, 2};
• if A ∈ F1 ∩ F2, then A ∈ Fi, and hence Ac ∈ Fi for all i ∈ {1, 2}. It follows that
Ac ∈ F1 ∩ F2;

• if An ∈ F1 ∩ F2, n ∈ N, then An ∈ Fi for all i ∈ {1, 2}. Hence, ∪n∈NAn ∈ Fi for all
i ∈ {1, 2}, and thus ∪n∈NAn ∈ F1 ∩ F2.

(b) Define
σ(A) :=

⋂
F σ-algebra
F⊇A

F .

Notice that the above intersection is over a non-empty family of σ-algebras, since the power
set on Ω is a σ-algebra that contains A. Then, the argument in part (a) can be extended
to the intersection of an arbitrary family of σ-algebras, proving that σ(A) is a σ-algebra,
and of course σ(A) ⊇ A. The uniqueness of such a σ-algebra follows immediately from its
construction.

(c) Let Ω := {1, 2, 3}, and consider the σ-algebras

F1 := σ({{1}}) = {∅, {1, 2, 3}, {1}, {2, 3}} and F2 := σ({{2}}) = {∅, {1, 2, 3}, {2}, {1, 3}}.

It is straightforward to verify that the union F1 ∪F2 contains both {1} and {2}, yet does not
contain {1} ∪ {2} = {1, 2}. Hence, F1 ∪ F2 is not a σ-algebra.

Exercise 1.2 Consider a probability space (Ω,F , P ). A σ-algebra F0 ⊆ F is said to be P -trivial if
P [A] ∈ {0, 1} for all A ∈ F0. Prove that F0 is P -trivial if and only if every F0-measurable random
variable X : Ω→ R is P -a.s. constant.

Solution 1.2 Suppose that F0 is P -trivial, and consider an F0-measurable random variable
X : Ω→ R. By definition we have that {X 6 a} ∈ F0 for all a ∈ R, and thus P [X 6 a] ∈ {0, 1}.
Define

c := inf{a ∈ R : P [X 6 a] = 1}.
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We first prove that c ∈ R. Since {X 6 n} ↑ {X ∈ R}, then P [X 6 n] ↑ P [X ∈ R] = 1,
and so the above infimum is over a nonempty set (i.e. c 6= ∞). Then, if c = −∞, we have
that P [X 6 −n] = 1 for all n ∈ N, and from the fact that {X 6 −n} ↓ ∅, it follows that
1 = limn→∞ P [X 6 −n] = P [∅] = 0. We get the desired contradiction.
By the definition of the infimum, we have that P [X 6 c + 1

n ] = 1 and P [X 6 c − 1
n ] = 0 for all

n ∈ N. Since {X 6 c+ 1
n} ↓ {X 6 c} and {X 6 c− 1

n} ↑ {X < c}, we get that

P [X 6 c] = lim
n→∞

P

[
X 6 c+ 1

n

]
= 1, and P [X < c] = lim

n→∞
P

[
X 6 c− 1

n

]
= 0.

Hence, we conclude that X = c P -a.s. because

P [X = c] = P [X 6 c]− P [X < c] = 1.

Conversely, suppose that every F0-measurable random variable is P -a.s. constant, and take
A ∈ F0. Then,

1A =
{

1 if ω ∈ A
0 if ω ∈ Ac

is an F0-measurable random variable, and hence must be P -a.s. constant. It follows immediately
that either P [1A = 1] = P [A] = 1 or P [1A = 0] = P [Ac] = 1, so that P [A] ∈ {0, 1}. This completes
the proof.

Exercise 1.3 Let (Ω,F , P ) be a probability space, X an integrable random variable and G ⊆ F a
σ-algebra. Then, the P -a.s. unique random variable Z such that

• Z is G-measurable and integrable,

• E [X1A] = E[Z1A] for all A ∈ G,
is called the conditional expectation of X given G and is denoted by E [X |G].
[This is the formal definition of the conditional expectation of X given G; see Section 8.2 in the
lecture notes.]

(a) Show that if X is G-measurable, then E [X |G] = X P -a.s.

(b) Show that E [E [X |G]] = E [X].

(c) Show that if P [A] ∈ {0, 1} for all A ∈ G (that is, if G is P -trivial), then E [X |G] = E [X]
P -a.s.

(d) Consider an integrable random variable Y on (Ω,F , P ), and some constants a, b ∈ R. Show
that E [aX + bY |G] = aE [X |G] + bE [Y |G] P -a.s.

(e) Suppose that G is generated by a finite partition of Ω, i.e., there exists a collection (Ai)i=1,...,n
of sets Ai ∈ F such that

⋃n
i=1Ai = Ω, Ai ∩ Aj = ∅ for i 6= j and G = σ(A1, . . . , An).

Additionally, assume that P [Ai] > 0 for all i = 1, . . . , n. Show that

E [X |G] =
n∑
i=1

E [X |Ai]1Ai P -a.s.

This says that the conditional expectation of a random variable given a finitely generated σ-
algebra is a piecewise constant function with the constants given by the elementary conditional
expectations given the sets of the generating partition.
[This is a very useful property when one conditions on a finitely generated σ-algebra, as for
instance in the multinomial model.]
Hint 1: Recall that E [X |Ai] = E [X1Ai ] /P [Ai] and try to write X as a sum of random
variables each of which only takes non-zero values on a single Ai.
Hint 2: Check that any set A ∈ G has the form ∪j∈JAj for some J ⊆ {1, . . . , n}.
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Solution 1.3

(a) X is G-measurable and integrable by assumption, so the first requirement in the definition of
conditional expectation is satisfied for Z = X. Moreover, we clearly have that E [X1A] =
E [X1A] for all A ∈ G, hence E [X |G] = X P -a.s.

(b) In the definition of the conditional expectation, set A = Ω. Then, we obtain that E [E [X |G]] =
E [E [X |G]1Ω] = E [X1Ω] = E [X].

(c) Since |E [X] | ≤ E [|X|] by Jensen’s inequality and E [|X|] < ∞ by the assumption that X
is integrable, we have that E [X] is integrable as well. E [X] is also trivially G-measurable
since it is a constant random variable. Moreover, in this setting, A ∈ G only if P [A] = 0 or
P [A] = 1. Noting that

E [X1A] = 0 = E [E [X]1A] , ∀A ∈ G such that P [A] = 0,
E [X1A] = E [X] = E [E [X]1A] , ∀A ∈ G such that P [A] = 1,

we obtain E [X |G] = E [X] P -a.s.

(d) By the definition of the conditional expectation, we have that E [X |G] and E [Y |G] are
G-measurable and integrable; hence, the same holds for aE [X |G] + bE [Y |G]. Choosing some
A ∈ G, we can compute that

E
[
(aE [X |G] + bE [Y |G])1A

]
= aE

[
E [X |G]1A

]
+ bE

[
E [Y |G]1A

]
= aE [X1A] + bE [Y 1A] = E [(aX + bY )1A] ,

where the first equality uses the linearity of the (classical) expectation and the second uses
the definition of E [X |G] and E [Y |G]. By the arbitrariness of A ∈ G, we can conclude that
E [aX + bY |G] = aE [X |G] + bE [Y |G] P -a.s.

(e) First recall that E [X |Ai] = E [X1Ai
] /P [Ai]. Using that

X = X1Ω = X1∪n
i=1Ai

= X

n∑
i=1

1Ai
=

n∑
i=1

X1Ai
,

where the third equality holds because Ai are pairwise disjoint, we get by part (d) that

E [X |G] =
n∑
i=1

E [X1Ai
|G] P -a.s.,

and hence we only have to show that E [X1Ai |G] = E[X1Ai
]

P [Ai] 1Ai P -a.s. for each i ∈ {1, . . . , n}.
Since Ai ∈ G and E [X |Ai] = E[X1Ai

]/P [Ai] ∈ R, we already know that E [X |Ai]1Ai

is G-measurable and integrable. One can verify that the family of sets A =
⋃
j∈J Aj for

J ∈ 2{1,...,n} (the power set of {1, . . . , n}) forms a σ-field. Let us denote this σ-field by G̃.
Since we clearly have Ai ∈ G̃ for all i ∈ {1, . . . , n}, we get that G̃ ⊇ G, which for any A ∈ G
implies that A =

⋃
j∈J Aj for some J ⊆ {1, . . . , n}. For any such A ∈ G, we have that

1Ai1A =
{
1Ai

if i ∈ J ,
0 else.

Hence, we can then compute

E

[(
E [X1Ai

]
P [Ai]

1Ai

)
1A

]
=
{
E [X1Ai ]

P [Ai]
P [Ai] = E [X1Ai ] if i ∈ J ,

0 else.
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On the other hand, we have that

E [X1Ai1A] =
{
E [X1Ai

] if i ∈ J ,
0 else.

This shows that E [X1Ai
|G] = E[X1Ai

]
P [Ai] 1Ai

P -a.s. and concludes the proof.

Exercise 1.4 Let (Ω,F , P ) be the probability space with Ω = {UU,UD,DD,DU}, F = 2Ω, and P
defined by P [ω] = 1/4 for all ω ∈ Ω (so P is the uniform probability measure on Ω). Consider the
random variables Y1, Y2 : Ω→ R that are given by Y1(UU) = Y1(UD) = 2, Y1(DD) = Y1(DU) =
1/2, Y2(UU) = Y2(DU) = 2, and Y2(DD) = Y2(UD) = 1/2. Define the process X = (Xk)k=0,1,2

by X0 = 8, and Xk = X0
∏k
i=1 Yi for k = 1, 2.

(a) Show that, for any continuous function h : R→ R, the composition h(X1) is σ(X1)-measurable.

(b) Draw a tree to illustrate the possible evolutions of the process X from time 0 to time 2, and
label the corresponding transition probabilities and probabilities.

(c) Write down the σ-algebras (i.e. give all their sets) defined by Fk = σ(Xi : 0 6 i 6 k) and
Gk = σ(Xk) for k = 0, 1, 2.

(d) Consider the collections of σ-algebras F = (Fk)k=0,1,2 and G = (Gk)k=0,1,2. Do these form
filtrations on (Ω,F)? Why or why not?

(e) If they are indeed filtrations, is X adapted to F or G?

(f) Give financial interpretations of X, F and G.

Solution 1.4

(a) It is sufficient to show that {h(X1) ≤ c} ∈ σ(X1) for all c ∈ R. We write

{h(X1) ≤ c} = (h(X1))−1 (−∞, c] = X−1
1 (h−1(−∞, c]).

Since (−∞, c] is closed and h is continuous, then h−1(−∞, c] is also closed, and hence
h−1(−∞, c] ∈ B(R). Then, X1 is clearly measurable with respect to σ(X1), and thus we have
that X−1

1 (h−1(−∞, c]) ∈ σ(X1), completing the proof.

(b) The tree with the transition probabilities labelled and the one with the probabilities labelled
are drawn below.

(c) Since X0 = 8 is a constant, then F0 = G0 = σ(X0) = {∅,Ω}. We thus also have F1 =
σ(X0, X1) = σ(X1) = G1. Moreover, because X1 is either 4 or 16, and X−1

1 (4) = {DD,DU}
and X−1

1 (16) = {UU,UD}, we have

σ(X1) = {∅,Ω, {DD,DU}, {UU,UD}} ,

(since the right hand side above is a σ-algebra). By the same reasoning, since X2 is either 2,
8, or 32, and X−1

2 (2) = {DD}, X−1
2 (8) = {DU,UD}, and X−1

2 (32) = {UU}, we have

G2 = σ(X2) = σ ({DD}, {DU,UD}, {UU}})
= {∅,Ω, {DD}, {DU,UD}, {UU}, {DD,DU,UD}, {DU,UD,UU},
{DD,UU}}.

Since {DD,DU}, {UU,UD} ∈ σ(X1) and {DU,UD}, {DD,UU} ∈ σ(X2), then by taking
intersections we see that {DU}, {UD} ∈ σ(X1, X2). Since also {DD}, {UU} ∈ σ(X2), we get

F2 = σ(X0, X1, X2) = 2Ω = F .
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(d) By construction, F is a filtration on (Ω,F) (of course, this can also be checked directly). Since
{DD,DU} ∈ G1\G2, then G1 ( G2, and hence G is not a filtration.

(e) By construction, X is adapted to F. Also, Xk is of course Gk-measurable for each k = 0, 1, 2,
but G is not a filtration.

(f) The process X can be interpreted as the price of a stock that is worth 8 at time zero, and at
each period changes by a factor of either 1/2 or 2.
The filtration F can be thought of as the cumulative information that the stock price evolution
provides us with over time.
The collection G can be though of as the information we know by only observing the present
stock price, but not the past stock prices.
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