Mathematical Foundations for Finance

Exercise sheet 1

The first three exercises of this sheet contain material which is **fundamental** for the course and **assumed to be known**. Please hand in your solutions by 12:00 on Wednesday, October 4 via the course homepage.

Exercise 1.1 Let Ω be a non-empty set.

- (a) Suppose that \mathcal{F}_1 and \mathcal{F}_2 are σ -algebras on Ω . Prove that $\mathcal{F}_1 \cap \mathcal{F}_2$ is also a σ -algebra on Ω .
- (b) Let \mathcal{A} be a family of subsets of Ω . Show that there is a (clearly unique) minimal σ -algebra $\sigma(\mathcal{A})$ containing \mathcal{A} . Here minimality is with respect to inclusion: if \mathcal{F} is a σ -algebra with $\mathcal{A} \subseteq \mathcal{F}$, then $\sigma(\mathcal{A}) \subseteq \mathcal{F}$.
- (c) Suppose that \mathcal{F}_1 and \mathcal{F}_2 are σ -algebras on Ω . Show by example that $\mathcal{F}_1 \cup \mathcal{F}_2$ may fail to be a σ -algebra. *Hint: You can consider two* σ -algebras \mathcal{F}_1 and \mathcal{F}_2 on $\Omega := \{1, 2, 3\}$.

Exercise 1.2 Consider a probability space (Ω, \mathcal{F}, P) . A σ -algebra $\mathcal{F}_0 \subseteq \mathcal{F}$ is said to be *P*-trivial if $P[A] \in \{0, 1\}$ for all $A \in \mathcal{F}_0$. Prove that \mathcal{F}_0 is *P*-trivial if and only if every \mathcal{F}_0 -measurable random variable $X : \Omega \to \mathbb{R}$ is *P*-a.s. constant.

Exercise 1.3 Let (Ω, \mathcal{F}, P) be a probability space, X an integrable random variable and $\mathcal{G} \subseteq \mathcal{F}$ a σ -field. Then, the *P*-a.s. unique random variable *Z* such that

- Z is \mathcal{G} -measurable and integrable,
- $E[X\mathbb{1}_A] = E[Z\mathbb{1}_A]$ for all $A \in \mathcal{G}$,

is called the conditional expectation of X given \mathcal{G} and is denoted by $E[X | \mathcal{G}]$. [This is the formal definition of the conditional expectation of X given \mathcal{G} ; see Section 8.2 in the lecture notes.]

- (a) Show that if X is \mathcal{G} -measurable, then $E[X | \mathcal{G}] = X$ P-a.s.
- (b) Show that $E[E[X | \mathcal{G}]] = E[X]$.
- (c) Show that if $P[A] \in \{0, 1\}$ for all $A \in \mathcal{G}$ (that is, if \mathcal{G} is *P*-trivial), then $E[X | \mathcal{G}] = E[X]$ *P*-a.s.
- (d) Consider an integrable random variable Y on (Ω, \mathcal{F}, P) , and some constants $a, b \in \mathbb{R}$. Show that $E[aX + bY | \mathcal{G}] = aE[X | \mathcal{G}] + bE[Y | \mathcal{G}] P$ -a.s.
- (e) Suppose that \mathcal{G} is generated by a finite partition of Ω , i.e., there exists a collection $(A_i)_{i=1,\ldots,n}$ of sets $A_i \in \mathcal{F}$ such that $\bigcup_{i=1}^n A_i = \Omega$, $A_i \cap A_j = \emptyset$ for $i \neq j$ and $\mathcal{G} = \sigma(A_1, \ldots, A_n)$. Additionally, assume that $P[A_i] > 0$ for all $i = 1, \ldots, n$. Show that

$$E[X | \mathcal{G}] = \sum_{i=1}^{n} E[X | A_i] \mathbb{1}_{A_i} P\text{-a.s.}$$

This says that the conditional expectation of a random variable given a finitely generated σ algebra is a *piecewise constant* function with the constants given by the elementary conditional expectations given the sets of the generating partition.

[This is a very useful property when one conditions on a finitely generated σ -algebra, as for instance in the multinomial model.]

Hint 1: Recall that $E[X | A_i] = E[X \mathbb{1}_{A_i}] / P[A_i]$ and try to write X as a sum of random variables each of which only takes non-zero values on a single A_i . *Hint 2:* Check that any set $A \in \mathcal{G}$ has the form $\bigcup_{i \in J} A_i$ for some $J \subseteq \{1, \ldots, n\}$.

Exercise 1.4 Let (Ω, \mathcal{F}, P) be the probability space with $\Omega = \{UU, UD, DD, DU\}, \mathcal{F} = 2^{\Omega}$, and P defined by $P[\omega] = 1/4$ for all $\omega \in \Omega$ (so P is the *uniform* probability measure on Ω). Consider the random variables $Y_1, Y_2: \Omega \to \mathbb{R}$ that are given by $Y_1(UU) = Y_1(UD) = 2, Y_1(DD) = Y_1(DU) = 1/2, Y_2(UU) = Y_2(DU) = 2$, and $Y_2(DD) = Y_2(UD) = 1/2$. Define the process $X = (X_k)_{k=0,1,2}$ by $X_0 = 8$, and $X_k = X_0 \prod_{i=1}^k Y_i$ for k = 1, 2.

- (a) Show that, for any continuous function $h : \mathbb{R} \to \mathbb{R}$, the composition $h(X_1)$ is $\sigma(X_1)$ -measurable.
- (b) Draw a tree to illustrate the possible evolutions of the process X from time 0 to time 2, and label the corresponding transition probabilities and probabilities.
- (c) Write down the σ -algebras (i.e. give all their sets) defined by $\mathcal{F}_k = \sigma(X_i : 0 \leq i \leq k)$ and $\mathcal{G}_k = \sigma(X_k)$ for k = 0, 1, 2.
- (d) Consider the collections of σ -algebras $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$ and $\mathbb{G} = (\mathcal{G}_k)_{k=0,1,2}$. Do these form filtrations on (Ω, \mathcal{F}) ? Why or why not?
- (e) If they are indeed filtrations, is X adapted to \mathbb{F} or \mathbb{G} ?
- (f) Give financial interpretations of X, \mathbb{F} and \mathbb{G} .