Mathematical Foundations for Finance Exercise Sheet 10

Exercise 10.1 Let (Ω, \mathcal{F}, P) be a probability space and $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ a filtration that satisfies the usual conditions. Consider a Brownian motion W and a process $H \in L^2_{loc}(W)$. Let us denote the stochastic integral $I_t := \int_0^t H_s dW_s$, for $t \geq 0$. Section 5.2 (*local martingale properties*) of the lecture notes shows that $(I_t)_{t\geq 0}$ is a local martingale. Prove that $(I_t)_{t\geq 0}$ is a martingale if any of the following conditions are satisfied:

- (a) $(I_t)_{t \in [0,T]}$ is a martingale, for all $T \ge 0$;
- (b) there exists $X \in L^1(P)$ such that $|I_t| \leq X$ for all $t \in [0, T]$, for all $T \geq 0$; Hint: You may use dominated convergence theorem
- (c) $E\left[\int_0^T H_s^2 ds\right] < \infty$, for all $T \ge 0$; Hint: You may prove that $H \in L^2(W^T)$ and use Proposition V.1.4

Solution 10.1

(a) Adaptedness is clear. Then, notice that

$$[0,\infty) = \bigcup_{T \ge 0} [0,T].$$

Therefore, we can deduce that I_t is integrable for all $t \in [0, T]$, and all $T \ge 0$, if and only if I_t is integrable for every $t \in [0, \infty)$. Similarly, the martingale property $E[I_t | \mathcal{F}_s] = I_s P$ -a.s. holds for all $s \le t$ with $s, t \in [0, T]$, and all $T \in [0, \infty)$, if and only if it holds for every $s \le t$ such that $s, t \in [0, \infty)$.

(b) According to point (a), it suffices to prove that the condition in point (b) implies that $(I_t)_{t \in [0,T]}$ is a martingale, for a fixed T > 0. Since the process $(I_t)_{t \ge 0}$ is a local martingale, we can consider a localizing sequence $(\sigma_n)_{n \in \mathbb{N}}$ for it. Then, $\tau_n := \sigma_n \wedge T$, for $n \in \mathbb{N}$, is a localizing sequence for $(I_t)_{t \in [0,T]}$. Moreover, by assumption, there exists a random variable $X \in L^1(P)$ such that

$$|I_t| = \left| \int_0^t H_s \mathrm{d}W_s \right| \le X \text{ P-a.s. for all } t \in [0,T]$$

Let us fix $0 \le s \le t \le T$. We have that $\lim_{n\to\infty} \tau_n = T$ *P*-a.s., and thus

$$\lim_{n \to \infty} I_t^{\tau_n} = I_t \text{ P-a.s. and } \lim_{n \to \infty} I_s^{\tau_n} = I_s \text{ P-a.s.}$$

Updated: December 7, 2023

The dominated convergence theorem implies

$$E\left[I_t \mid \mathcal{F}_s\right] = E\left[\lim_{n \to \infty} I_t^{\tau_n} \mid \mathcal{F}_s\right] = \lim_{n \to \infty} E\left[I_t^{\tau_n} \mid \mathcal{F}_s\right] = \lim_{n \to \infty} I_s^{\tau_n} = I_s \text{ P-a.s.}$$

This concludes the proof that $(I_t)_{t\geq 0}$ is a martingale since adaptedness and integrability are clear.

(c) Let us fix $T \ge 0$. Since $(W_t^2 - t)_{t\ge 0}$ is a martingale, so is the process

$$(W_{t\wedge T}^2 - (t\wedge T))_{t>0}$$

by Theorem IV.2.2 in the lecture notes. Moreover, the process $(t \wedge T)_{t\geq 0}$ is adapted to \mathbb{F} , increasing, null at 0 with $\Delta(t \wedge T) = 0 = (\Delta W_{t\wedge T})^2$. Theorem V.1.1 allows us to conclude that

$$\begin{bmatrix} W^T \end{bmatrix}_t = t \wedge T P$$
-a.s. for all $t \ge 0$.

Hence,

$$E\left[\int_0^\infty H_s^2 \mathrm{d}\left[W^T\right]_s\right] = E\left[\int_0^\infty H_s^2 \mathrm{d}(s \wedge T)\right] = E\left[\int_0^T H_s^2 \mathrm{d}s\right] < \infty$$

by our assumption. Since it is clear that $W^T \in \mathcal{M}_0^2$, Proposition V.1.4 directly implies that $\int H dW^T \in \mathcal{M}_0^2$. Moreover,

$$\int_0^t H_s \mathrm{d} W_s^T = \left(\int_0^t H_s \mathrm{d} W_s\right)^T P\text{-a.s. for all } t \ge 0$$

because of Section 5.2 (behaviour under stopping) of the lecture notes. We deduce that T

$$\left(\int H_s \mathrm{d}W_s\right)^T \in \mathcal{M}_0^2,$$

and in particular that $(\int_0^t H_s dW_s)_{t \in [0,T]}$ is a square-integrable martingale. The proof follows by point (a).

Exercise 10.2 Let (Ω, \mathcal{F}, P) be a probability space and $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ a filtration that satisfies the usual conditions. Consider two independent Brownian motions W and B, and fix some constant T > 0.

(a) Consider the process $X = (X_t)_{t>0}$ defined by

$$X_t := \int_0^t s \mathrm{d}W_s + B_t$$

Show that $X^T = (X_{t \wedge T})_{t \geq 0} \in \mathcal{M}_0^2$. Hint: You may use the fact that if $M_1, M_2 \in \mathcal{M}_0^2$ then $M_1 + M_2 \in \mathcal{M}_0^2$.

Updated: December 7, 2023

- (b) Prove that $[X]_t = t^3/3 + t$ *P*-a.s., for $t \ge 0$.
- (c) Deduce that $E[(X_T)^2 \mid \mathcal{F}_t] = X_t^2 + \frac{T^3 t^3}{3} + (T t)$ *P*-a.s., for $t \in [0, T]$.

Solution 10.2

(a) Section 5.2 (behaviour under stopping) of the lecture notes implies that

$$X_t^T = \left(\int_0^t s \mathrm{d}W_s\right)^T + B_t^T = \int_0^t s \mathrm{d}W_s^T + B_t^T \ P\text{-a.s. for all } t \ge 0.$$

It holds that $B^T \in \mathcal{M}_0^2$ since $E[(B_t^T)^2] = t \wedge T \leq T < \infty$ *P*-a.s., for $t \geq 0$. Moreover, the process $(H_s)_{s\geq 0}$ defined by $H_s := s$ is in $L^2(W^T)$ because it is clearly predictable since it is \mathbb{F} -adapted and continuous, and

$$E\left[\int_0^\infty s^2 \mathrm{d}\left[W^T\right]_s\right] = E\left[\int_0^\infty s^2 \mathrm{d}(s \wedge T)\right] = E\left[\int_0^T s^2 \mathrm{d}s\right] = \frac{T^3}{3} < \infty.$$

Proposition V.1.4 implies that the stochastic integral $\left(\int_0^t s dW_s^T\right) \in \mathcal{M}_0^2$. We can conclude that $X^T \in \mathcal{M}_0^2$.

(b) For any $t \ge 0$, Section 5.2 (quadratic variation) of the lecture notes implies

$$[X]_{t} = \left[\int_{0}^{t} s dW_{s} + B\right]_{t} = \left[\int_{0}^{t} s dW_{s}\right]_{t} + 2\left[\int_{0}^{t} s dW_{s}, B\right]_{t} + [B]_{t}$$
$$= \int_{0}^{t} s^{2} d[W]_{s} + 2\int_{0}^{t} s d[W, B]_{t} + [B]_{t} = \frac{t^{3}}{3} + t$$

since $[W]_t = [B]_t = t$, and $[W, B]_t = 0$ by the independence of W and B.

(c) Since $X^T \in \mathcal{M}_0^2$, the process $(X^T)^2 - [X]^T$ is a martingale. By point (b), we get that, for any $t \in [0, T]$,

$$E[(X_T)^2 \mid \mathcal{F}_t] = X_t^2 + E[[X]_T - [X]_t \mid \mathcal{F}_t] = X_t^2 + \frac{T^3 - t^3}{3} + (T - t) P \text{-a.s.}$$

Exercise 10.3 Let (Ω, \mathcal{F}, P) be a probability space and $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ a filtration that satisfies the usual conditions. Consider a Brownian motion W. For any $t \geq 0$, using Itô's formula, write the following as stochastic integrals:

- (a) W_t^2 ;
- (b) $t^2 W_t$;
- (c) $\sin(2t W_t);$
- (d) $\exp(at + bW_t)$, where $a, b \in \mathbb{R}$ are constants.

Updated: December 7, 2023

Solution 10.3

(a) Let $f(x) = x^2$. Then f is C^2 , and f'(x) = 2x and f''(x) = 2. Itô's formula then gives

$$W_t^2 = \int_0^t 2W_s \, \mathrm{d}W_s + \frac{1}{2} \int_0^t 2 \, \mathrm{d}s = 2 \int_0^t W_s \, \mathrm{d}W_s + t$$

(b) Let $f(t,x) = t^2 x$. Then f is C^2 , and $\frac{\partial f}{\partial t}(t,x) = 2tx$, $\frac{\partial f}{\partial x}(t,x) = t^2$ and $\frac{\partial^2 f}{\partial x^2}(t,x) = 0$. Itô's formula then gives

$$t^2 W_t = 2 \int_0^t s W_s \, \mathrm{d}s + \int_0^t s^2 \, \mathrm{d}W_s.$$

(c) Let $f(t, x) = \sin(2t - x)$. Then f is C^2 , and we have $\frac{\partial f}{\partial t}(t, x) = 2\cos(2t - x)$, $\frac{\partial f}{\partial x}(t, x) = -\cos(2t - x)$ and $\frac{\partial^2 f}{\partial x^2}(t, x) = -\sin(2t - x)$. We then apply Itô's formula to get

$$\sin(2t - W_t) = \int_0^t 2\cos(2s - W_s) \, \mathrm{d}s - \int_0^t \cos(2s - W_s) \, \mathrm{d}W_s$$
$$- \frac{1}{2} \int_0^t \sin(2s - W_s) \, \mathrm{d}s$$
$$= \int_0^t \left(2\cos(2s - W_s) - \frac{1}{2}\sin(2s - W_s)\right) \, \mathrm{d}s$$
$$- \int_0^t \cos(2s - W_s) \, \mathrm{d}W_s.$$

(d) Let $f(t,x) = \exp(at + bx)$. Then f is C^2 , and $\frac{\partial f}{\partial t}(t,x) = a \exp(at + bx)$, $\frac{\partial f}{\partial x}(t,x) = b \exp(at + bx)$ and $\frac{\partial^2 f}{\partial x^2}(t,x) = b^2 \exp(at + bx)$. Itô's formula then gives

$$\exp(at + bW_t) = 1 + \int_0^t a \exp(as + bW_s) \, \mathrm{d}s + \int_0^t b \exp(as + bW_s) \, \mathrm{d}W_s$$
$$+ \frac{1}{2} \int_0^t b^2 \exp(as + bW_s) \, \mathrm{d}s$$
$$= 1 + \int_0^t \left(a + \frac{b^2}{2}\right) \exp(as + bW_s) \, \mathrm{d}s$$
$$+ \int_0^t b \exp(as + bW_s) \, \mathrm{d}W_s,$$

as required.

Exercise 10.4 Let (Ω, \mathcal{F}, P) be a probability space and $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ a filtration that satisfies the usual conditions. Let W be a Brownian motion on this space.

(a) Let $f \in C(\mathbb{R}; \mathbb{R})$. Show that the stochastic integral process $(\int_0^t f(W_s) \, dW_s)_{t \ge 0}$ is a continuous local martingale.

Updated: December 7, 2023

Exercise Sheet 10

(b) Let $f \in C^2(\mathbb{R}; \mathbb{R})$. Show that $(f(W_t))_{t \ge 0}$ is a continuous local martingale if and only if $\int_0^t f''(W_s) \, \mathrm{d}s = 0$ for all $t \ge 0$.

Hint: You may use the fact that a continuous local martingale null at zero is a process of finite variation if and only if it is identically 0.

- (c) Using Itô's formula, establish which of the following processes are local martingales:
 - $(\sin W_t \cos W_t)_{t \ge 0};$
 - $(\exp(\frac{1}{2}a^2t)\cos(aW_t-b))_{t\geq 0}$, where $a, b \in \mathbb{R}$ are constants;
 - $(W_t^3 3tW_t)_{t \ge 0}$.

Solution 10.4

- (a) First note that $(f(W_s))_{s\geq 0}$ is adapted (since W is adapted and f is continuous) with continuous paths (since W has continuous paths and f is continuous). In particular, $(f(W_s))_{s\geq 0}$ is predictable and locally bounded, and thus belongs to $L^2_{loc}(W)$. Since W is a (local) martingale null at zero, the stochastic integral process $(\int_0^t f(W_s) dW_s)_{t\geq 0}$ is thus a well-defined continuous local martingale.
- (b) By Itô's formula,

$$f(W_t) = f(W_0) + \int_0^t f'(W_s) \, \mathrm{d}W_s + \frac{1}{2} \int_0^t f''(W_s) \, \mathrm{d}s \ P\text{-a.s.}, \text{ for } t \ge 0.$$

By part (a), we know that $(\int_0^t f'(W_s) \, dW_s)_{t \ge 0}$ is a continuous local martingale, and thus $(f(W_t))_{t \ge 0}$ is a continuous local martingale if and only if $(\int_0^t f''(W_s) \, ds)_{t \ge 0}$ is also a continuous local martingale. But $(\int_0^t f''(W_s) \, ds)_{t \ge 0}$ is a process of finite variation (indeed, for each $t \ge 0$, we have the equality $\int_0^t f''(W_s) \, ds = \int_0^t f''(W_s)^+ \, ds - \int_0^t f''(W_s)^- \, ds$, so that $(\int_0^t f''(W_s) \, ds)_{t \ge 0}$ is the difference of two increasing processes), null at zero, and is thus a continuous local martingale if and only if it is identically zero. That is, $(f(W_t))_{t \ge 0}$ is a continuous local martingale if and only if $\int_0^t f''(W_s) \, ds = 0$ for all $t \ge 0$, as required.

(c) By the same reasoning as in point (b), we can show using Itô's formula that for $f \in C^2([0,\infty) \times \mathbb{R};\mathbb{R})$, the process $(f(t, W_t))_{t \ge 0}$ is a continuous local martingale if and only if

$$\int_0^t \frac{\partial f}{\partial t}(s, W_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, W_s) \, \mathrm{d}s = 0 \text{ P-a.s., for any } t \ge 0.$$

• Let $f(x) = \sin x - \cos x$. Then f is C^2 , and $f(W_t) = \sin W_t - \cos W_t$. Since $f''(x) = -\sin x + \cos x$, then $f'' \neq 0$, and thus $(\sin W_t - \cos W_t)_{t \ge 0}$ is not a local martingale.

Updated: December 7, 2023

• Let $f(t,x) = \exp(\frac{1}{2}a^2t)\cos(ax-b)$. Then f is C^2 , and also we have that $\frac{\partial f}{\partial t}(t,x) = \frac{1}{2}a^2\exp(\frac{1}{2}a^2t)\cos(ax-b)$ and $\frac{\partial^2 f}{\partial x^2}(t,x) = -a^2\exp(\frac{1}{2}a^2t)\cos(ax-b)$. Thus,

$$\int_0^t \frac{\partial f}{\partial t}(s, W_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, W_s) \, \mathrm{d}s$$

= $\int_0^t \frac{1}{2} a^2 \exp\left(\frac{1}{2}a^2t\right) \cos(aW_t - b) - \frac{1}{2}a^2 \exp\left(\frac{1}{2}a^2t\right) \cos(aW_t - b) \, \mathrm{d}s$
= 0 *P*-a.s., for any $t \ge 0$.

Since $\exp(\frac{1}{2}a^2t)\cos(aW_t-b) = f(t, W_t)$, it now follows that $(\exp(\frac{1}{2}a^2t)\cos(aW_t-b))_{t\geq 0}$ is a continuous local martingale.

• Let $f(t,x) = x^3 - 3tx$. Then f is C^2 , and $\frac{\partial f}{\partial t}(t,x) = -3x$ and $\frac{\partial^2 f}{\partial x^2}(t,x) = 6x$. For any $t \ge 0$, we then have that

$$\int_0^t \frac{\partial f}{\partial t}(s, W_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, W_s) \, \mathrm{d}s = \int_0^t 3W_s - 3W_s \, \mathrm{d}s = 0 \ P\text{-a.s.}$$

Since $W_t^3 - 3tW_t = f(t, W_t)$, it follows that $(W_t^3 - 3tW_t)_{t \ge 0}$ is a continuous local martingale.