Mathematical Foundations for Finance Exercise Sheet 10

Please hand in your solutions by 12:00 on Wednesday, December 6 via the course homepage.

Exercise 10.1 Let (Ω, \mathcal{F}, P) be a probability space and $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ a filtration that satisfies the usual conditions. Consider a Brownian motion W and a process $H \in L^2_{loc}(W)$. Let us denote the stochastic integral $I_t := \int_0^t H_s dW_s$, for $t \geq 0$. Section 5.2 (*local martingale properties*) of the lecture notes shows that $(I_t)_{t\geq 0}$ is a local martingale. Prove that $(I_t)_{t\geq 0}$ is a martingale if any of the following conditions are satisfied:

- (a) $(I_t)_{t \in [0,T]}$ is a martingale, for all $T \ge 0$;
- (b) there exists $X \in L^1(P)$ such that $|I_t| \leq X$ for all $t \in [0, T]$, for all $T \geq 0$; Hint: You may use dominated convergence theorem
- (c) $E\left[\int_0^T H_s^2 ds\right] < \infty$, for all $T \ge 0$; Hint: You may prove that $H \in L^2(W^T)$ and use Proposition V.1.4

Exercise 10.2 Let (Ω, \mathcal{F}, P) be a probability space and $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ a filtration that satisfies the usual conditions. Consider two independent Brownian motions W and B, and fix some constant T > 0.

(a) Consider the process $X = (X_t)_{t \ge 0}$ defined by

$$X_t := \int_0^t s \mathrm{d}W_s + B_t.$$

Show that $X^T = (X_{t \wedge T})_{t \geq 0} \in \mathcal{M}_0^2$. Hint: You may use the fact that if $M_1, M_2 \in \mathcal{M}_0^2$ then $M_1 + M_2 \in \mathcal{M}_0^2$.

(b) Prove that $[X]_t = t^3/3 + t$ *P*-a.s., for $t \ge 0$.

(c) Deduce that $E[(X_T)^2 \mid \mathcal{F}_t] = X_t^2 + \frac{T^3 - t^3}{3} + (T - t)$ *P*-a.s., for $t \in [0, T]$.

Exercise 10.3 Let (Ω, \mathcal{F}, P) be a probability space and $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ a filtration that satisfies the usual conditions. Consider a Brownian motion W. For any $t \geq 0$, using Itô's formula, write the following as stochastic integrals:

(a) W_t^2 ;

Updated: November 29, 2023

1/2

- (b) $t^2 W_t$;
- (c) $\sin(2t W_t);$
- (d) $\exp(at + bW_t)$, where $a, b \in \mathbb{R}$ are constants.

Exercise 10.4 Let (Ω, \mathcal{F}, P) be a probability space and $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ a filtration that satisfies the usual conditions. Let W be a Brownian motion on this space.

- (a) Let $f \in C(\mathbb{R}; \mathbb{R})$. Show that the stochastic integral process $(\int_0^t f(W_s) dW_s)_{t \ge 0}$ is a continuous local martingale.
- (b) Let $f \in C^2(\mathbb{R};\mathbb{R})$. Show that $(f(W_t))_{t\geq 0}$ is a continuous local martingale if and only if $\int_0^t f''(W_s) \, \mathrm{d}s = 0$ for all $t \geq 0$.

Hint: You may use the fact that a continuous local martingale null at zero is a process of finite variation if and only if it is identically 0.

- (c) Using Itô's formula, establish which of the following processes are local martingales:
 - $(\sin W_t \cos W_t)_{t \ge 0};$
 - $(\exp(\frac{1}{2}a^2t)\cos(aW_t-b))_{t\geq 0}$, where $a, b \in \mathbb{R}$ are constants;
 - $(W_t^3 3tW_t)_{t \ge 0}$.