Mathematical Foundations for Finance Exercise Sheet 11

Exercise 11.1 Let $X=\left(X_{t}\right)_{t \geq 0}$ be a continuous semimartingale null at 0 . We define the process

$$
Z:=\mathcal{E}(X):=e^{X-\frac{1}{2}[X]}
$$

(a) Show via Itô's formula that

$$
\begin{equation*}
Z_{t}=1+\int_{0}^{t} Z_{s} \mathrm{~d} X_{s}, P \text {-a.s., for } t \geq 0 \tag{1}
\end{equation*}
$$

Conclude that Z is a continuous local martingale if and only if X is a continuous local martingale.
Hint: You may compute Itô's formula for $f(x, y):=e^{x-\frac{1}{2} y}$.
(b) Show that $Z=\mathcal{E}(X)$ is the unique solution to (1).

Hint: You may compute Z^{\prime} / Z using Itô's formula, where Z^{\prime} is another solution of Equation (1).
(c) Let $Y=\left(Y_{t}\right)_{t \geq 0}$ be another continuous semimartingale null at 0 . Prove Yor's formula

$$
\mathcal{E}(X) \mathcal{E}(Y)=\mathcal{E}(X+Y+[X, Y]), P \text {-a.s. }
$$

Hint: You may deduce this formula from the uniqueness proved at point (b).

Solution 11.1

(a) We apply Itô's formula to the C^{2}-function $f(x, y):=e^{x-\frac{1}{2} y}$ and the continuous semimartingale $\left(X_{t},[X]_{t}\right)_{t \geq 0}$. We obtain that

$$
\begin{aligned}
\mathrm{d} Z_{t}= & \mathrm{d} f\left(X_{t},[X]_{t}\right) \\
= & \frac{\partial}{\partial x} f\left(X_{t},[X]_{t}\right) \mathrm{d} X_{t}+\frac{\partial}{\partial y} f\left(X_{t},[X]_{t}\right) \mathrm{d}[X]_{t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} f\left(X_{t},[X]_{t}\right) \mathrm{d}[X]_{t} \\
& +\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}} f\left(X_{t},[X]_{t}\right) \mathrm{d}[[X]]_{t}+\frac{\partial^{2}}{\partial x \partial y} f\left(X_{t},[X]_{t}\right) \mathrm{d}[X,[X]]_{t}, P \text {-a.s.. }
\end{aligned}
$$

However, since X is continuous and $[X]$ is continuous and of finite variation, we have that $[[X]]=0, P$-a.s., and $[X,[X]]=0, P$-a.s. Moreover, a direct computation shows that $\frac{\partial}{\partial y} f+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} f=0$ and $\frac{\partial}{\partial x} f=f$. We conclude that

$$
\mathrm{d} Z_{t}=Z_{t} \mathrm{~d} X_{t}, P \text {-a.s., or } Z_{t}=1+\int_{0}^{t} Z_{s} \mathrm{~d} X_{s}, P \text {-a.s. }
$$

As Z is a C^{2}-transformation of the continuous semimartingale $\left(X_{t},[X]_{t}\right)_{t \geq 0}$, the process Z is always a continuous semimartingale (hence predictable and locally bounded). Therefore, $Z \in L_{\text {loc }}^{2}(M)$ for all continuous local martingales M. If X is a continuous local martingale, then we conclude that Z is a continuous local martingale.

Conversely, since Z is strictly positive by definition, X is given by

$$
\mathrm{d} X_{t}=\frac{1}{Z_{t}} \mathrm{~d} Z_{t}, P \text {-a.s., or } X_{t}=\int_{0}^{t} \frac{1}{Z_{s}} \mathrm{~d} Z_{s}, P \text {-a.s. }
$$

Therefore, if Z is a continuous local martingale, then X is a local martingale by the same reasoning as above.
(b) Let Z^{\prime} be another process such that

$$
\mathrm{d} Z_{t}^{\prime}=Z_{t}^{\prime} \mathrm{d} X_{t}, \quad Z_{0}^{\prime}=1, P \text {-a.s. }
$$

Since Z^{\prime} is necessarily a semimartingale, we can apply Itô's formula to the quotient $\frac{Z^{\prime}}{Z}=f\left(Z^{\prime}, Z\right)$ with the function $f(x, y)=\frac{x}{y}$. A direct computation yields

$$
\begin{gathered}
\frac{\partial}{\partial x} f(x, y)=\frac{1}{y}, \quad \frac{\partial}{\partial y} f(x, y)=-\frac{x}{y^{2}} \\
\frac{\partial^{2}}{\partial x^{2}} f(x, y)=0, \quad \frac{\partial^{2}}{\partial x \partial y} f(x, y)=-\frac{1}{y^{2}}, \quad \frac{\partial^{2}}{\partial y^{2}} f(x, y)=2 \frac{x}{y^{3}} .
\end{gathered}
$$

Plugging these into Itô's formula and using that $\mathrm{d} Z_{t}=Z_{t} \mathrm{~d} X_{t}$ and $\mathrm{d} Z_{t}^{\prime}=Z_{t}^{\prime} \mathrm{d} X_{t}$ gives that $\mathrm{d}[Z]_{t}=Z_{t}^{2} \mathrm{~d}[X]_{t}, \mathrm{~d}\left[Z^{\prime}, Z\right]_{t}=Z_{t}^{\prime} Z_{t} \mathrm{~d}[X]_{t}$ which then yields

$$
\begin{aligned}
\mathrm{d}\left(\frac{Z_{t}^{\prime}}{Z_{t}}\right) & =\frac{1}{Z_{t}} \mathrm{~d} Z_{t}^{\prime}-\frac{Z_{t}^{\prime}}{Z_{t}^{2}} \mathrm{~d} Z_{t}-\frac{1}{Z_{t}^{2}} \mathrm{~d}\left[Z^{\prime}, Z\right]_{t}+\frac{Z_{t}^{\prime}}{Z_{t}^{3}} \mathrm{~d}[Z]_{t} \\
& =\frac{Z_{t}^{\prime}}{Z_{t}} \mathrm{~d} X_{t}-\frac{Z_{t}^{\prime}}{Z_{t}} \mathrm{~d} X_{t}-\frac{Z_{t}^{\prime}}{Z_{t}} \mathrm{~d}[X]_{t}+\frac{Z_{t}^{\prime}}{Z_{t}} \mathrm{~d}[X]_{t} \\
& =0, P \text {-a.s. }
\end{aligned}
$$

Hence, we conclude that $\frac{Z_{t}^{\prime}}{Z_{t}}=1, P$-a.s., for all $t \geq 0$.
(c) The product rule implies that

$$
\begin{aligned}
\mathrm{d}(\mathcal{E}(X) \mathcal{E}(Y)) & =\mathcal{E}(X) \mathrm{d} \mathcal{E}(Y)+\mathcal{E}(Y) \mathrm{d} \mathcal{E}(X)+\mathrm{d}[\mathcal{E}(X), \mathcal{E}(Y)] \\
& =\mathcal{E}(X) \mathcal{E}(Y) \mathrm{d} Y+\mathcal{E}(Y) \mathcal{E}(X) \mathrm{d} X+\mathcal{E}(X) \mathcal{E}(Y) \mathrm{d}[X, Y] \\
& =\mathcal{E}(X) \mathcal{E}(Y) \mathrm{d}(X+Y+[X, Y])
\end{aligned}
$$

By uniqueness of the solution to $\mathrm{d} Z=Z \mathrm{~d} X$ for X replaced by $X+Y+[X, Y]$, we conclude that

$$
\mathcal{E}(X) \mathcal{E}(Y)=\mathcal{E}(X+Y+[X, Y])
$$

Updated: December 13, 2023

Exercise 11.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space where the filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfies the usual conditions. Consider two independent Brownian motions $W^{1}=\left(W_{t}^{1}\right)_{t \in[0, T]}$ and $W^{2}=\left(W_{t}^{2}\right)_{t \in[0, T]}$, and let $\widetilde{S}^{1}=\left(\widetilde{S}_{t}^{1}\right)_{t \in[0, T]}$ and $\widetilde{S}^{2}=\left(\widetilde{S}_{t}^{2}\right)_{t \in[0, T]}$ be two processes with the dynamics

$$
\begin{aligned}
& \mathrm{d} \widetilde{S}_{t}^{1}=\widetilde{S}_{t}^{1}\left(\mu_{1} \mathrm{~d} t+\sigma_{1} \mathrm{~d} B_{t}^{1}\right), P \text {-a.s., } \widetilde{S}_{0}^{1}>0, \\
& \mathrm{~d} \widetilde{S}_{t}^{2}=\widetilde{S}_{t}^{2}\left(\mu_{2} \mathrm{~d} t+\sigma_{2} \mathrm{~d} B_{t}^{2}\right), P \text {-a.s., } \widetilde{S}_{0}^{2}>0,
\end{aligned}
$$

where $B^{1}:=W^{1}$ and $B^{2}:=\alpha W^{1}+\sqrt{1-\alpha^{2}} W^{2}$, for some $\alpha \in(-1,1), \mu_{1}, \mu_{2} \in \mathbb{R}$ and $\sigma_{1}, \sigma_{2}>0$.
(a) Find the SDEs describing the dynamics of $X^{1}:=\frac{\widetilde{S}^{2}}{\widetilde{S}^{1}}$ and $X^{2}:=\frac{\widetilde{S}^{1}}{\widetilde{S}^{2}}$, expressed in terms of B^{1} and B^{2}.
(b) Fix some $\beta_{1}, \beta_{2} \in \mathbb{R}$, and define the continuous local martingale

$$
L^{\left(\beta_{1}, \beta_{2}\right)}:=\beta_{1} W^{1}+\beta_{2} W^{2} .
$$

Show that the stochastic exponential $Z^{\left(\beta_{1}, \beta_{2}\right)}:=\mathcal{E}\left(L^{\left(\beta_{1}, \beta_{2}\right)}\right)$ is a true martingale on $[0, T]$.
Hint: You may use the independence of W^{1} and W^{2} and Proposition IV.2.3 in the lecture notes.
(c) Fix some $\beta_{1}, \beta_{2} \in \mathbb{R}$, and define the probability measure $Q^{\left(\beta_{1}, \beta_{2}\right)}$, which is equivalent to P on \mathcal{F}_{T}, by

$$
\mathrm{d} Q^{\left(\beta_{1}, \beta_{2}\right)}=Z_{T}^{\left(\beta_{1}, \beta_{2}\right)} \mathrm{d} P .
$$

Show that $Z^{\left(\beta_{1}, \beta_{2}\right)}$ is the density process of $Q^{\left(\beta_{1}, \beta_{2}\right)}$ with respect to P on $[0, T]$. Using Girsanov's theorem, prove that the two processes $\widetilde{W}_{t}^{1}:=W_{t}^{1}-\beta_{1} t$ and $\widetilde{W}_{t}^{2}:=W_{t}^{2}-\beta_{2} t$, for $t \in[0, T]$, are local $Q^{\left(\beta_{1}, \beta_{2}\right)}$-martingales. Conclude that

$$
\widetilde{B}^{1}:=\widetilde{W}^{1} \text { and } \widetilde{B}_{t}^{2}:=B_{t}^{2}-\left(\alpha \beta_{1}+\sqrt{1-\alpha^{2}} \beta_{2}\right) t, \text { for } t \in[0, T]
$$

are local $Q^{\left(\beta_{1}, \beta_{2}\right)}$-martingales as well.
(d) What conditions on $\beta_{1}, \beta_{2} \in \mathbb{R}$ make the processes X^{1} and $X^{2} Q^{\left(\beta_{1}, \beta_{2}\right)_{-}}$ martingales? Can they be martingales simultaneously under the same measure? Hint: You may rewrite the SDEs describing the dynamics of X^{1} and X^{2} in terms of \widetilde{W}^{1} and \widetilde{W}^{2}, and use the fact (without proving it) that \widetilde{W}^{1} and \widetilde{W}^{2} are independent Brownian motions under $Q^{\left(\beta_{1}, \beta_{2}\right)}$ (the reasoning is analogous to point (b)).

Solution 11.2

(a) Take $i \neq j$, where $i, j \in\{1,2\}$. By Itô's formula, we get

$$
\begin{aligned}
\mathrm{d} X^{i} & =\mathrm{d}\left(\frac{\widetilde{S}^{j}}{\widetilde{S}^{i}}\right)=\frac{1}{\widetilde{S}^{i}} \mathrm{~d} \widetilde{S}^{j}-\frac{\widetilde{S}^{j}}{\left(\widetilde{S}^{i}\right)^{2}} \mathrm{~d} \widetilde{S}^{i}-\frac{1}{\left(\widetilde{S}^{i}\right)^{2}} \mathrm{~d}\left[\widetilde{S}^{i}, \widetilde{S}^{j}\right]+\frac{\widetilde{S}^{j}}{\left(\widetilde{S}^{i}\right)^{3}} \mathrm{~d}\left[\widetilde{S}^{i}\right] \\
& =X^{i}\left(\left(\mu_{j}-\mu_{i}+\sigma_{i}^{2}-\alpha \sigma_{i} \sigma_{j}\right) \mathrm{d} t+\sigma_{j} \mathrm{~d} B^{j}-\sigma_{i} \mathrm{~d} B^{i}\right), P-\text { a.s. }
\end{aligned}
$$

(b) Fix some $\beta_{1}, \beta_{2} \in \mathbb{R}$. Then, $L^{\left(\beta_{1}, \beta_{2}\right)}$ is clearly a martingale, whose quadratic variation satisfies, for all $t \in[0, T]$,

$$
\left[L^{\left(\beta_{1}, \beta_{2}\right)}\right]_{t}=\left[\beta_{1} W^{1}+\beta_{2} W^{2}\right]_{t}=\beta_{1}^{2} t+\beta_{2}^{2} t, P \text {-a.s. }
$$

where we have used that $\left[W^{1}, W^{2}\right]=0, P$-a.s. Moreover, by independence of W^{1} and W^{2} and Proposition IV.2.3 in the lecture notes, we have

$$
\begin{aligned}
E\left[\left.\frac{Z_{t}^{\left(\beta_{1}, \beta_{2}\right)}}{Z_{s}^{\left(\beta_{1}, \beta_{2}\right)}} \right\rvert\, \mathcal{F}_{s}\right] & =E\left[\frac{e^{\beta_{1} W_{t}^{1}+\beta_{2} W_{t}^{2}-\frac{1}{2}\left(\beta_{1}^{2}+\beta_{2}^{2}\right) t}}{\left.\left.e^{\beta_{1} W_{s}^{1}+\beta_{2} W_{s}^{2}-\frac{1}{2}\left(\beta_{1}^{2}+\beta_{2}^{2}\right) s} \right\rvert\, \mathcal{F}_{s}\right]}\right. \\
& =E\left[\left.e^{\beta_{1}\left(W_{t}^{1}-W_{s}^{1}\right)+\beta_{2}\left(W_{t}^{2}-W_{s}^{2}\right)-\frac{1}{2}\left(\beta_{1}^{2}+\beta_{2}^{2}\right)(t-s)} \right\rvert\, \mathcal{F}_{s}\right] \\
& =e^{-\frac{1}{2}\left(\beta_{1}^{2}+\beta_{2}^{2}\right)(t-s)} E\left[e^{\beta_{1}\left(W_{t}^{1}-W_{s}^{1}\right)+\beta_{2}\left(W_{t}^{2}-W_{s}^{2}\right)} \mid \mathcal{F}_{s}\right] \\
& =e^{-\frac{1}{2} \beta_{1}^{2}(t-s)} E\left[e^{\beta_{1}\left(W_{t}^{1}-W_{s}^{1}\right)}\right] e^{-\frac{1}{2} \beta_{2}^{2}(t-s)} E\left[e^{\beta_{2}\left(W_{t}^{2}-W_{s}^{2}\right)}\right] \\
& =1, P \text {-a.s., for } s, t \in[0, T] \text { with } s \leq t,
\end{aligned}
$$

so $Z^{\left(\beta_{1}, \beta_{2}\right)}$ has the martingale property. Adaptedness is clear and the integrability follows from the fact that $Z_{t}^{\left(\beta_{1}, \beta_{2}\right)}$ is a log-normally distributed random variable for all $t \in[0, T]$, and we know that all moments of log-normal distributions are finite. Therefore, $Z_{t}^{\left(\beta_{1}, \beta_{2}\right)}$ is a martingale.
(c) We prove that $Z_{t}^{\left(\beta_{1}, \beta_{2}\right)}=\tilde{Z}_{t}^{\left(\beta_{1}, \beta_{2}\right)}, P$-a.s., for any $t \in[0, T]$, where $\tilde{Z}^{\left(\beta_{1}, \beta_{2}\right)}$ denotes the density process of $Q^{\left(\beta_{1}, \beta_{2}\right)}$ with respect to P on $[0, T]$. Let us fix $t \in[0, T]$, and some $A \in \mathcal{F}_{t}$. It holds that

$$
\begin{aligned}
E\left[1_{A} \tilde{Z}_{t}^{\left(\beta_{1}, \beta_{2}\right)}\right] & =E^{P}\left[1_{A} \tilde{Z}_{t}^{\left(\beta_{1}, \beta_{2}\right)}\right] \\
& =E^{P \mid \mathcal{F}_{t}}\left[1_{A} \tilde{Z}_{t}^{\left(\beta_{1}, \beta_{2}\right)}\right] \\
& =E^{Q^{\left(\beta_{1}, \beta_{2}\right) \mid \mathcal{F}_{t}}\left[1_{A}\right]} \\
& =E^{Q^{\left(\beta_{1}, \beta_{2}\right)}\left[1_{A}\right]} \\
& =E^{P}\left[1_{A} \frac{\mathrm{~d} Q^{\left(\beta_{1}, \beta_{2}\right)}}{\mathrm{d} P}\right] \\
& =E^{P}\left[1_{A} Z_{T}^{\left(\beta_{1}, \beta_{2}\right)}\right] \\
& =E^{P}\left[1_{A} E^{P}\left[Z_{T}^{\left(\beta_{1}, \beta_{2}\right)} \mid \mathcal{F}_{t}\right]\right]
\end{aligned}
$$

Using the martingale property of $Z^{\left(\beta_{1}, \beta_{2}\right)}$, we deduce that

$$
E\left[1_{A} \tilde{Z}_{t}^{\left(\beta_{1}, \beta_{2}\right)}\right]=E\left[1_{A} Z_{t}^{\left(\beta_{1}, \beta_{2}\right)}\right]
$$

and we conclude that $\tilde{Z}_{t}^{\left(\beta_{1}, \beta_{2}\right)}=Z_{t}^{\left(\beta_{1}, \beta_{2}\right)}, P$-a.s., by the arbitrariness of A.
By Girsanov's theorem in the form of Theorem VI.2.3 in the lecture notes, we know that

$$
W^{1}-\left[L^{\left(\beta_{1}, \beta_{2}\right)}, W^{1}\right] \text { and } W^{2}-\left[L^{\left(\beta_{1}, \beta_{2}\right)}, W^{2}\right]
$$

are local $Q^{\left(\beta_{1}, \beta_{2}\right)}$-martingales. Thus, it suffices to show that for all $t \in[0, T]$, we have

$$
\left[L^{\left(\beta_{1}, \beta_{2}\right)}, W^{1}\right]_{t}=\beta_{1} t, P \text {-a.s., and }\left[L^{\left(\beta_{1}, \beta_{2}\right)}, W^{2}\right]_{t}=\beta_{2} t, P \text {-a.s. }
$$

But this follows immediately from the independence of W^{1} and W^{2} and the definition of $L^{\left(\beta_{1}, \beta_{2}\right)}$.
To conclude, we simply write the definition of the corresponding process \widetilde{B}^{2} to get

$$
\begin{align*}
\widetilde{B}_{t}^{2} & :=B_{t}^{2}-\left(\alpha \beta_{1}+\sqrt{1-\alpha^{2}} \beta_{2}\right) t:=\alpha\left(W_{t}^{1}-\beta_{1} t\right)+\sqrt{1-\alpha^{2}}\left(W_{t}^{2}-\beta_{2} t\right) \\
& =\alpha \widetilde{W}_{t}^{1}+\sqrt{1-\alpha^{2}} \widetilde{W}_{t}^{2}, \text { for } t \in[0, T] \tag{2}
\end{align*}
$$

which is a linear combination of local $Q^{\left(\beta_{1}, \beta_{2}\right)}$-martingales.
(d) First, we note that X^{1} and X^{2} still satisfy the same SDEs under $Q^{\left(\beta_{1}, \beta_{2}\right)}$ with the only difference that B^{1} and B^{2} are in general no longer Brownian motions under $Q^{\left(\beta_{1}, \beta_{2}\right)}$. Using that \widetilde{B}^{1} and \widetilde{B}^{2} are local martingales under $Q^{\left(\beta_{1}, \beta_{2}\right)}$, we get by (a) that

$$
\begin{align*}
\mathrm{d} X^{i} & =X^{i}\left(\left(\mu_{j}-\mu_{i}+\sigma_{i}^{2}-\alpha \sigma_{i} \sigma_{j}\right) \mathrm{d} t+\sigma_{j} \mathrm{~d}\left(\widetilde{B}^{j}+\gamma_{j} t\right)-\sigma_{i} \mathrm{~d}\left(\widetilde{B}^{i}+\gamma_{i} t\right)\right) \\
& =X^{i}\left(\left(\mu_{j}-\mu_{i}+\sigma_{i}^{2}-\alpha \sigma_{i} \sigma_{j}+\sigma_{j} \gamma_{j}-\sigma_{i} \gamma_{i}\right) \mathrm{d} t+\sigma_{j} \mathrm{~d} \widetilde{B}^{j}-\sigma_{i} \mathrm{~d} \widetilde{B}^{i}\right) \tag{3}
\end{align*}
$$

where $\gamma_{1}:=\beta_{1}$ and $\gamma_{2}:=\alpha \beta_{1}+\sqrt{1-\alpha^{2}} \beta_{2}$. Next, X^{i} is a local $Q^{\left(\beta_{1}, \beta_{2}\right)}$ martingale if and only if the drift component in (3) vanishes, i.e.,

$$
\begin{equation*}
\mu_{j}-\mu_{i}+\sigma_{i}^{2}-\alpha \sigma_{i} \sigma_{j}+\sigma_{j} \gamma_{j}-\sigma_{i} \gamma_{i}=0 \tag{4}
\end{equation*}
$$

Now, we express the local martingale components in terms of \widetilde{W}^{1} and \widetilde{W}^{2} (see Equation (2)),

$$
\left\{\begin{array}{l}
\sigma_{1} \mathrm{~d} \widetilde{B}^{1}-\sigma_{2} \mathrm{~d} \widetilde{B}^{2}=\left(\sigma_{1}-\sigma_{2} \alpha\right) \mathrm{d} \widetilde{W}^{1}-\sigma_{2} \sqrt{1-\alpha^{2}} \mathrm{~d} \widetilde{W}^{2} \\
\sigma_{2} \mathrm{~d} \widetilde{B}^{2}-\sigma_{1} \mathrm{~d} \widetilde{B}^{1}=\sigma_{2} \sqrt{1-\alpha^{2}} \mathrm{~d} \widetilde{W}^{2}-\left(\sigma_{1}-\sigma_{2} \alpha\right) \mathrm{d} \widetilde{W}^{1}
\end{array}\right.
$$

Since \widetilde{W}^{1} and \widetilde{W}^{2} are independent Brownian motions under $Q^{\left(\beta_{1}, \beta_{2}\right)}$, we may argue analogously to (b) that X^{1} and X^{2} are true $Q^{\left(\beta_{1}, \beta_{2}\right)}$-martingales provided that (4) holds.
Finally, either X^{1} or X^{2} can be a martingale but not both simultaneously. In fact, because $X^{2}=1 / X^{1}$ and $\mathbb{R}_{+} \ni x \mapsto 1 / x$ is a strictly convex function, Jensen's inequality gives $\tilde{P}\left(E^{\tilde{P}}\left[X_{t}^{2} \mid \mathcal{F}_{s}\right]>1 / E^{\tilde{P}}\left[X_{t}^{1} \mid \mathcal{F}_{s}\right]\right)>0$, for $s, t \in[0, T]$ with $s \leq t$, for any probability \tilde{P} such that X^{1} is a true \tilde{P}-martingale.

Exercise 11.3 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying the usual conditions. Let $M=\left(M_{t}\right)_{t \in[0, T]}$ be a local martingale and $W=\left(W_{t}\right)_{t \in[0, T]}$ a Brownian motion.
(a) Let $H=\left(H_{t}\right)_{t \in[0, T]}$ be in $L^{2}(M)$. Compute $E\left[\int_{0}^{T} H_{s} \mathrm{~d} M_{s}\right]$ and $\operatorname{Var}\left[\int_{0}^{T} H_{s} \mathrm{~d} M_{s}\right]$. How do the expressions look like when $M:=W$?
(b) By finding a counterexample, show that the random variable $\int_{0}^{T} H_{s} \mathrm{~d} W_{s}$ is not normally distributed for any arbitrary continuous process $H \in L^{2}(W)$.
Hint: You may use the example at page 106 of the lecture notes.

Solution 11.3

(a) Since $H \in L^{2}(M)$, we know that $(H \cdot M) \in \mathcal{M}_{0}^{2}$, i.e. $(H \cdot M)$ is a squareintegrable RCLL (P, \mathbb{F})-martingale null at 0 with $\sup _{t \geq 0} E\left[(H \cdot M)_{t}^{2}\right]<\infty$. In particular, both $E\left[(H \cdot M)_{T}\right]$ and $\operatorname{Var}\left[(H \cdot M)_{T}\right]$ are finite for all $T \geq 0$. We must therefore have that

$$
E\left[\int_{0}^{T} H_{s} \mathrm{~d} M_{s}\right]=E\left[E\left[\int_{0}^{T} H_{s} \mathrm{~d} M_{s} \mid \mathcal{F}_{0}\right]\right]=E\left[(H \cdot M)_{0}\right]=0 .
$$

For the variance, we compute

$$
\operatorname{Var}\left[\int_{0}^{T} H_{s} \mathrm{~d} M_{s}\right]=E\left[\left(\int_{0}^{T} H_{s} \mathrm{~d} M_{s}\right)^{2}\right]=E\left[\int_{0}^{T} H_{s}^{2} \mathrm{~d}[M]_{s}\right]
$$

where the first equality uses that $E\left[(H \cdot M)_{T}\right]=0$ and the second the isometry property of the stochastic integral with respect to a local martingale.

In the particular case of a Brownian motion, i.e. when $M=W$, no further simplification is needed for $E\left[(H \cdot W)_{T}\right]$. As for $\operatorname{Var}\left[(H \cdot W)_{T}\right]$, we have that

$$
E\left[\int_{0}^{T} H_{s}^{2} \mathrm{~d}[W]_{s}\right]=E\left[\int_{0}^{T} H_{s}^{2} \mathrm{~d} s\right]=\int_{0}^{T} E\left[H_{s}^{2}\right] \mathrm{d} s
$$

where the last equality uses Fubini's theorem.
(b) From the example at page 106 of the lecture notes, we have that

$$
\int_{0}^{T} W_{s} \mathrm{~d} W_{s}=\frac{1}{2} W_{T}^{2}-\frac{1}{2} T
$$

Since W_{T}^{2} only takes positive values, it is clear that $\frac{1}{2} W_{T}^{2}-\frac{1}{2} T$ is bounded from below for every $T \geq 0$, so it cannot be normally distributed. More specifically,

$$
\frac{1}{2} W_{T}^{2}-\frac{1}{2} T \stackrel{d}{=} \frac{1}{2}\left(\sqrt{T} W_{1}\right)^{2}-\frac{1}{2} T,
$$

and since $W_{1} \sim \mathcal{N}(0,1)$, we have that $W_{1}^{2} \sim \chi_{1}^{2}$, so the distribution of $\int_{0}^{T} W_{s} \mathrm{~d} W_{s}$ is just a simple affine transformation of a chi-squared distribution with one degree of freedom.

