Mathematical Foundations for Finance Exercise Sheet 11

Please hand in your solutions by 12:00 on Wednesday, December 13 via the course homepage.

Exercise 11.1 Let $X=\left(X_{t}\right)_{t \geq 0}$ be a continuous semimartingale null at 0 . We define the process

$$
Z:=\mathcal{E}(X):=e^{X-\frac{1}{2}[X]}
$$

(a) Show via Itô's formula that

$$
\begin{equation*}
Z_{t}=1+\int_{0}^{t} Z_{s} \mathrm{~d} X_{s}, P \text {-a.s., for } t \geq 0 \tag{1}
\end{equation*}
$$

Conclude that Z is a continuous local martingale if and only if X is a continuous local martingale.
Hint: You may compute Itô's formula for $f(x, y):=e^{x-\frac{1}{2} y}$.
(b) Show that $Z=\mathcal{E}(X)$ is the unique solution to (1).

Hint: You may compute Z^{\prime} / Z using Itô's formula, where Z^{\prime} is another solution of Equation (1).
(c) Let $Y=\left(Y_{t}\right)_{t \geq 0}$ be another continuous semimartingale null at 0 . Prove Yor's formula

$$
\mathcal{E}(X) \mathcal{E}(Y)=\mathcal{E}(X+Y+[X, Y]), P \text {-a.s. }
$$

Hint: You may deduce this formula from the uniqueness proved at point (b).

Exercise 11.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space where the filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfies the usual conditions. Consider two independent Brownian motions $W^{1}=\left(W_{t}^{1}\right)_{t \in[0, T]}$ and $W^{2}=\left(W_{t}^{2}\right)_{t \in[0, T]}$, and let $\widetilde{S}^{1}=\left(\widetilde{S}_{t}^{1}\right)_{t \in[0, T]}$ and $\widetilde{S}^{2}=\left(\widetilde{S}_{t}^{2}\right)_{t \in[0, T]}$ be two processes with the dynamics

$$
\begin{aligned}
& \mathrm{d} \widetilde{S}_{t}^{1}=\widetilde{S}_{t}^{1}\left(\mu_{1} \mathrm{~d} t+\sigma_{1} \mathrm{~d} B_{t}^{1}\right), P \text {-a.s., } \widetilde{S}_{0}^{1}>0, \\
& \mathrm{~d} \widetilde{S}_{t}^{2}=\widetilde{S}_{t}^{2}\left(\mu_{2} \mathrm{~d} t+\sigma_{2} \mathrm{~d} B_{t}^{2}\right), P \text {-a.s., } \widetilde{S}_{0}^{2}>0,
\end{aligned}
$$

where $B^{1}:=W^{1}$ and $B^{2}:=\alpha W^{1}+\sqrt{1-\alpha^{2}} W^{2}$, for some $\alpha \in(-1,1), \mu_{1}, \mu_{2} \in \mathbb{R}$ and $\sigma_{1}, \sigma_{2}>0$.
(a) Find the SDEs satisfied by $X^{1}:=\frac{\widetilde{S}^{2}}{\widetilde{S}^{1}}$ and $X^{2}:=\frac{\widetilde{S}^{1}}{\widetilde{S}^{2}}$, expressed in terms of B^{1} and B^{2}.
(b) Fix some $\beta_{1}, \beta_{2} \in \mathbb{R}$, and define the continuous local martingale

$$
L^{\left(\beta_{1}, \beta_{2}\right)}:=\beta_{1} W^{1}+\beta_{2} W^{2} .
$$

Show that the stochastic exponential $Z^{\left(\beta_{1}, \beta_{2}\right)}:=\mathcal{E}\left(L^{\left(\beta_{1}, \beta_{2}\right)}\right)$ is a true martingale on $[0, T]$.
Hint: You may use the independence of W^{1} and W^{2} and Proposition IV.2.3 in the lecture notes.
(c) Fix some $\beta_{1}, \beta_{2} \in \mathbb{R}$, and define the probability measure $Q^{\left(\beta_{1}, \beta_{2}\right)}$, which is equivalent to P on \mathcal{F}_{T}, by

$$
\mathrm{d} Q^{\left(\beta_{1}, \beta_{2}\right)}=Z_{T}^{\left(\beta_{1}, \beta_{2}\right)} \mathrm{d} P
$$

Show that $Z^{\left(\beta_{1}, \beta_{2}\right)}$ is the density process of $Q^{\left(\beta_{1}, \beta_{2}\right)}$ with respect to P on $[0, T]$. Using Girsanov's theorem, prove that the two processes $\widetilde{W}_{t}^{1}:=W_{t}^{1}-\beta_{1} t$ and $\widetilde{W}_{t}^{2}:=W_{t}^{2}-\beta_{2} t$, for $t \in[0, T]$, are local $Q^{\left(\beta_{1}, \beta_{2}\right)}$-martingales. Conclude that

$$
\widetilde{B}^{1}:=\widetilde{W}^{1} \text { and } \widetilde{B}_{t}^{2}:=B_{t}^{2}-\left(\alpha \beta_{1}+\sqrt{1-\alpha^{2}} \beta_{2}\right) t, \text { for } t \in[0, T]
$$

are local $Q^{\left(\beta_{1}, \beta_{2}\right)}$-martingales as well.
(d) What conditions on $\beta_{1}, \beta_{2} \in \mathbb{R}$ make the processes X^{1} and $X^{2} Q^{\left(\beta_{1}, \beta_{2}\right)}$ martingales? Can they be martingales simultaneously under the same measure? Hint: You may rewrite the SDEs satisfied by X^{1} and X^{2} in terms of \widetilde{W}^{1} and \widetilde{W}^{2}, and use the fact (without proving it) that \widetilde{W}^{1} and \widetilde{W}^{2} are independent Brownian motions under $Q^{\left(\beta_{1}, \beta_{2}\right)}$ (the reasoning is analogous to point (b)).

Exercise 11.3 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying the usual conditions. Let $M=\left(M_{t}\right)_{t \in[0, T]}$ be a local martingale and $W=\left(W_{t}\right)_{t \in[0, T]}$ a Brownian motion.
(a) Let $H=\left(H_{t}\right)_{t \in[0, T]}$ be in $L^{2}(M)$. Compute $E\left[\int_{0}^{T} H_{s} \mathrm{~d} M_{s}\right]$ and $\operatorname{Var}\left[\int_{0}^{T} H_{s} \mathrm{~d} M_{s}\right]$. How do the expressions look like when $M:=W$?
(b) By finding a counterexample, show that the random variable $\int_{0}^{T} H_{s} \mathrm{~d} W_{s}$ is not normally distributed for any arbitrary continuous process $H \in L^{2}(W)$. Hint: You may use the example at page 106 of the lecture notes.

