Mathematical Foundations for Finance Exercise Sheet 3

Please hand in your solutions by 12:00 on Wednesday, October 18 via the course homepage.

Exercise 3.1 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$.

(a) Let X be a martingale. Show that for any bounded and convex function $f \colon \mathbb{R} \to \mathbb{R}$, the process $f(X) = (f(X_k))_{k \in \mathbb{N}_0}$ is a submartingale.

Could we replace the request of f being bounded with a more general condition?

Hint: You may use that finite-valued convex functions are continuous.

(b) Let X be a submartingale, and let $\vartheta = (\vartheta_k)_{k \in \mathbb{N}_0}$ be a bounded, nonnegative and predictable process. Show that the stochastic integral process $\vartheta \bullet X$, defined by

$$\vartheta \bullet X_k = \sum_{j=1}^k \vartheta_j \Delta X_j = \sum_{j=1}^k \vartheta_j (X_j - X_{j-1}),$$

is a submartingale.

Conclude that $E[\vartheta \bullet X_k] \ge 0$ for all $k \in \mathbb{N}_0$.

(c) Let X be a submartingale and let τ be a stopping time. Show that the stopped process $X^{\tau} = (X_k^{\tau})_{k \in \mathbb{N}_0}$ defined by $X_k^{\tau} = X_{k \wedge \tau}$ is a submartingale.

Exercise 3.2 Fix u > d > -1 and a finite time horizon $T \in \mathbb{N}$. Let Y_1, \ldots, Y_T be i.i.d. random variables with distribution given by

$$P[Y_k = 1 + u] = p,$$
 $P[Y_k = 1 + d] = 1 - p,$

where $p \in (0, 1)$ is fixed. Also, fix r > -1, and let $(\tilde{S}^0, \tilde{S}^1)$ be a binomial model with the price processes of the assets in our market given by $\tilde{S}_0^1 = 1$ and

$$\widetilde{S}_{k}^{0} = (1+r)^{k}, \ k = 0, \dots, T,
\frac{\widetilde{S}_{k}^{1}}{\widetilde{S}_{k-1}^{1}} = Y_{k}, \qquad k = 1, \dots, T.$$

(a) By constructing an arbitrage opportunity, show that the market $(\tilde{S}^0, \tilde{S}^1)$ admits arbitrage if $r \leq d$.

Updated: October 11, 2023

1/2

(b) Show that the same holds if $r \ge u$.

Exercise 3.3 Let $\vartheta = (\vartheta_k)_{k=0,\dots,T}$ be a predictable process with $\vartheta_0 = 0$, and let $\varphi = (0, \vartheta)$ be the corresponding self-financing strategy with initial capital 0.

- (a) Show that if φ is not admissible, then there exists some $k \in \{0, \ldots, T\}$ with $P[G_k(\vartheta) < 0] > 0.$
- (b) Suppose that φ also satisfies $V_T(\varphi) \ge 0$ *P*-a.s., and $P[V_T(\varphi) > 0] > 0$. Construct a modification φ' of φ so that the corresponding self-financing strategy $\varphi' \triangleq (0, \vartheta')$ is 0-admissible and satisfies $V_T(\varphi') \ge 0$ *P*-a.s., and $P[V_T(\varphi') > 0] > 0$.