Mathematical Foundations for Finance Exercise Sheet 4

Exercise 4.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space, where $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,\dots,T}$. For any stopping time τ , we define

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} \colon A \cap \{ \tau \le k \} \in \mathcal{F}_k \text{ for all } k = 0, 1, \dots, T \}.$$

- (a) Show that \mathcal{F}_{τ} is a σ -algebra.
- (b) Suppose σ, τ are two \mathbb{F} -stopping times with $\sigma(\omega) \leq \tau(\omega)$ for all $\omega \in \Omega$. Show that $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$. Conclude that if $\tau \equiv k_0$ for a fixed $k_0 \in \{0, 1, \ldots, T\}$, then we have $\mathcal{F}_{\tau} = \mathcal{F}_{k_0}$.
- (c) If τ, σ are two \mathbb{F} -stopping times, prove that $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} = \mathcal{F}_{\tau \wedge \sigma}$. Moreover, show that $\{\sigma \leq \tau\} \in \mathcal{F}_{\tau \wedge \sigma}$, and $\{\sigma = \tau\} \in \mathcal{F}_{\tau \wedge \sigma}$.
- (d) Let Y be an integrable random variable. Prove that

$$E[Y | \mathcal{F}_{\tau}] \mathbb{1}_{\{\tau=k\}} = E[Y | \mathcal{F}_{k}] \mathbb{1}_{\{\tau=k\}} P\text{-a.s. for all } k \in \{0, 1, \dots, T\},$$

or, equivalently,

$$E[Y | \mathcal{F}_{\tau}] = \sum_{k=0}^{T} \mathbb{1}_{\{\tau=k\}} E[Y | \mathcal{F}_{k}] \text{ P-a.s}$$

Solution 4.1

- (a) We check the requirements for σ -algebra:
 - $\Omega \in \mathcal{F}_{\tau}$ because $\Omega \cap \{\tau \leq k\} = \{\tau \leq k\} \in \mathcal{F}_k$ for all $k \in \{0, 1, \dots, T\}$.
 - If $A \in \mathcal{F}_{\tau}$, then, for all $k \in \{0, 1, \dots, T\}$, it holds that

$$A^{c} \cap \{\tau \leq k\} = \{\tau \leq k\} \cap (A^{c} \cup \{\tau \leq k\}^{c}) = \{\tau \leq k\} \cap (A \cap \{\tau \leq k\})^{c} \in \mathcal{F}_{k},$$

so that $A^{c} \in \mathcal{F}_{\tau}$.

• If $A_n \in \mathcal{F}_{\tau}$, $n \in \mathbb{N}$, we have

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap \{\tau \le k\} = \bigcup_{n=1}^{\infty} \left(A_n \cap \{\tau \le k\}\right) \in \mathcal{F}_k$$

for all $k \in \{0, 1, \dots, T\}$, and so $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}_{\tau}$.

Updated: October 27, 2023

1 / 6

(b) Let $A \in \mathcal{F}_{\sigma}$ and $k \in \{0, 1, \dots, T\}$, then we have

$$A \cap \{\tau \le k\} = (\underbrace{A \cap \{\sigma \le k\}}_{\in \mathcal{F}_k}) \cap \{\tau \le k\} \in \mathcal{F}_k$$

because $A \in \mathcal{F}_{\sigma}$, and the assumption $\tau \leq \sigma$ implies that $\{\tau \leq k\} \subseteq \{\sigma \leq k\}$. This shows that $A \in \mathcal{F}_{\tau}$, and thus $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$ by arbitrariness of $A \in \mathcal{F}_{\sigma}$.

Now, if $\tau \equiv k_0$ for a fixed $k_0 \in \{0, 1, \ldots, T\}$, then $\mathcal{F}_{\tau} \subset \mathcal{F}_{k_0}$ and $\mathcal{F}_{k_0} \subset \mathcal{F}_{\tau}$, which yields to the desired equality $\mathcal{F}_{k_0} = \mathcal{F}_{\tau}$.

(c) Part (b) gives that $\mathcal{F}_{\sigma \wedge \tau} \subseteq \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$ since $\sigma \wedge \tau \leq \sigma$ and $\sigma \wedge \tau \leq \tau$. Suppose next that $A \in \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$. We observe that

$$A \cap \{\sigma \land \tau \le k\} = A \cap \left(\{\sigma \le k\} \cup \{\tau \le k\}\right)$$
$$= \left(\underbrace{A \cap \{\sigma \le k\}}_{\in \mathcal{F}_k}\right) \cup \left(\underbrace{A \cap \{\tau \le k\}}_{\in \mathcal{F}_k}\right) \in \mathcal{F}_k$$

for all $k \in \{0, 1, ..., T\}$. This shows $\mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau} \subseteq \mathcal{F}_{\sigma \wedge \tau}$ and hence $\mathcal{F}_{\sigma \wedge \tau} = \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$. To prove the remaining claims, note that, for each $k \in \{0, 1, ..., T\}$,

$$\{\sigma \le \tau\} \cap \{\tau \le k\} = \bigcup_{i=0}^{k} \left(\{\sigma \le \tau\} \cap \{\tau = i\}\right) = \bigcup_{i=0}^{k} \left(\{\sigma \le i\} \cap \{\tau = i\}\right) \in \mathcal{F}_{k}.$$

Thus $\{\sigma \leq \tau\} \in \mathcal{F}_{\tau}$. Similarly, we have

$$\{\sigma \le \tau\} \cap \{\sigma \le k\} = \{\sigma \land k \le \tau \land k\} \cap \{\sigma \le k\} \in \mathcal{F}_k$$

because $\sigma \wedge k$ and $\tau \wedge k$ are both \mathbb{F} -stopping times, and so $\{\sigma \wedge k \leq \tau \wedge k\} \in \mathcal{F}_{\tau \wedge k} \subseteq \mathcal{F}_k$ by the previous step. Hence,

$$\{\sigma \leq \tau\} \in \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau} = \mathcal{F}_{\sigma \wedge \tau}.$$

The last assertion follows from the fact that $\{\sigma = \tau\} = \{\sigma \leq \tau\} \cap \{\tau \leq \sigma\}.$

(d) Let us fix $k \in \{0, 1, ..., T\}$, and denote by LHS and RHS the left- and right-hand sides of

$$E[Y | \mathcal{F}_{\tau}] \mathbb{1}_{\{\tau=k\}} = E[Y | \mathcal{F}_{k}] \mathbb{1}_{\{\tau=k\}},$$

respectively. Now, note that RHS is \mathcal{F}_k -measurable since $\{\tau = k\} \in \mathcal{F}_k$. Moreover, $\{\tau = k\} \in \mathcal{F}_{\tau}$ by part (c), and thus the random variable $\mathbb{1}_{\{\tau=k\}}$ is \mathcal{F}_{τ} -measurable. It follows that

LHS =
$$E\left[Y\mathbb{1}_{\{\tau=k\}} \middle| \mathcal{F}_{\tau}\right]$$
 P-a.s..

Updated: October 27, 2023

it holds that $A \cap \{\pi = k\} = (A \cap \{\pi \leq k\}) \cap \{\pi = k\} \subset \mathcal{T}_{\mathbf{c}}$

For any $A \in \mathcal{F}_{\tau}$ it holds that $A \cap \{\tau = k\} = (A \cap \{\tau \leq k\}) \cap \{\tau = k\} \in \mathcal{F}_k$, where $k \in \{0, 1, \ldots, T\}$. Then,

$$E\left[Y\mathbb{1}_{\{\tau=k\}}\mathbb{1}_{A}\right] = E\left[Y\mathbb{1}_{A\cap\{\tau=k\}}\right] = E\left[E\left[Y \mid \mathcal{F}_{k}\right]\mathbb{1}_{A\cap\{\tau=k\}}\right]$$
$$= E\left[E\left[Y \mid \mathcal{F}_{k}\right]\mathbb{1}_{\{\tau=k\}}\mathbb{1}_{A}\right] = E\left[\mathrm{RHS1}_{A}\right],$$

which shows that

RHS =
$$E\left[Y\mathbb{1}_{\{\tau=k\}} \middle| \mathcal{F}_{\tau}\right]$$
 = LHS *P*-a.s.

Exercise 4.2 Let (S_0, S_1) be the (discounted) trinomial model with T = 1. This is a special case of the multinomial model where $S_0^1 = s_0^1$, for $s_0^1 > 0$, $S_1^1 = YS_0^1/(1+r)$, for some r > -1 and

$$Y_k = \begin{cases} 1+d & \text{with probability } p_1, \\ 1+m & \text{with probability } p_2, \\ 1+u & \text{with probability } p_3 \end{cases}$$

where -1 < d < m < u, and $p_1, p_2, p_3 > 0$ such that $p_1 + p_2 + p_3 = 1$. The filtration \mathbb{F} we consider is given by $\mathcal{F}_0 := \{\emptyset, \Omega\}, \mathcal{F}_1 := \sigma(Y)$.

(a) Assume that d = -0.5, m = 0, u = 0.25 and r = 0, and consider an arbitrary self-financing strategy $\varphi \cong (V_0, \theta)$. Show that if the total gain $G_1(\theta)$ at time T = 1 is non-negative *P*-a.s., then

$$P[G_1(\theta) = 0] = 1.$$

What does this property imply?

(b) Show that S^1 is arbitrage-free by constructing an equivalent martingale measure (EMM) for S^1 . Hint: A probability measure Q equivalent to P on \mathcal{F}_1 can be uniquely described by a probability vector $(q_1, q_2, q_3) \in (0, 1)^3$ whose coordinates sum up to 1, where

by a probability vector $(q_1, q_2, q_3) \in (0, 1)^3$ whose coordinates sum up to 1, where $q_k = Q[Y_1 = 1 + y_k], k = 1, 2, 3$, using the notation $y_1 := d, y_2 := m$ and $y_3 := u$.

Solution 4.2

(a) Let us compute the total gain $G_1(\theta)$ at time T = 1:

$$\begin{aligned} G_1(\theta) &= \theta_1^1 \Delta S_1^1 = \theta_1^1 (S_1^1 - S_0^1) = \theta_1^1 S_0^1 \left(\frac{Y_1}{1+r} - 1 \right) \\ &= \theta_1^1 S_0^1 \times \begin{cases} \frac{d-r}{1+r} & \text{with probability } p_1, \\ \frac{m-r}{1+r} & \text{with probability } p_2, \\ \frac{u-r}{1+r} & \text{with probability } p_3.. \end{cases} \end{aligned}$$

Updated: October 27, 2023

Recall that u - r = 0.25 > 0 and d - r = -0.5 < 0. Hence $P[G_1(\theta) \ge 0] = 1$ if and only if $\theta_1^1 S_0^1 = 0$. As a result, we can conclude that

$$P[G_1(\theta) \ge 0] = 1 \quad \iff \quad \theta_1^1 = 0 \quad \iff \quad P[G_1(\theta) = 0] = 1.$$

Assume now that $V_0 = 0$ and note that in this case $V_1(\varphi) = G_1(\theta)$. The above argument proves that if $V_1(\varphi) \ge 0$ *P*-a.s., then $V_1(\varphi) = 0$ *P*-a.s., and by Proposition 1.1 in the lecture notes, we know that this is equivalent to saying that S^1 is arbitrage-free.

(b) Let $(q_1, q_2, q_3) \in (0, 1)^3$ be a probability vector and Q be defined by

$$Q[Y_1 = 1 + y_k] := q_k, \ k = 1, 2, 3,$$

where $y_1 := d$, $y_2 := m$ and $y_3 := u$. Then S^1 is a *Q*-martingale if and only if S^1 is adapted to the considered filtration (note that the filtration generated *Y* is equivalently generated by S^1), integrable (the probability space is finite here, so all random variables are integrable), and

$$E_Q \left[S_1^1 \right] = S_0^1 \iff E_Q \left[S_0^1 Y_1 / (1+r) \right] = S_0^1$$

$$\iff E_Q \left[Y_1 \right] = 1 + r$$

$$\iff q_1 \times (1+d) + q_2 \times (1+m) + q_3 \times (1+u) = 1 + r$$

$$\iff q_1 \times d + q_2 \times m + q_3 \times u = r$$

$$\iff -0.5q_1 + 0q_2 + 0.25q_3 = 0$$

$$\iff q_3 = 2q_1.$$

Recall that in order to make Q a probability measure, we need to have $q_1 + q_2 + q_3 = 1$; hence choosing $q_1 = 0.25$, we obtain that $q_3 = 0.5$ and $q_2 = 0.25$. Noting that $q_1, q_2, q_3 \in (0, 1)$, we can also observe that Q is a probability measure equivalent to P and thus an EMM for S^1 .

More generally, we can set $q_1 := \alpha$ to get $q_3 = 2\alpha$ and $q_2 = 1 - q_1 - q_3 = 1 - 3\alpha$. Then q_1 , q_2 and q_3 are all in (0, 1) if and only if $\alpha \in (0, \frac{1}{3})$.

Exercise 4.3 Let (S^0, S^1) be the (discounted) binomial model with $T = 1, p \in (0, 1)$, and u > 0 > d > -1. Fix some K > 0, and define the functions $h_C, h_P : \mathbb{R} \to \mathbb{R}$ by

$$h_C(x) := (x - K)^+ := \max\{0, x - K\}, h_P(x) := (K - x)^+ := \max\{0, K - x\}.$$

The European options with payoff functions h_C and h_P are called the European call option and the European put option, respectively.

Updated: October 27, 2023

4 / 6

(a) Construct a self-financing strategy $\varphi^C \triangleq (V_0^C, \vartheta^C)$ such that

$$V_1(\varphi^C) = h_C(S_1^1)$$

Write down explicitly the values of V_0^C and ϑ_1^C .

(b) Construct a self-financing strategy $\varphi^P \cong (V_0^P, \vartheta^P)$ such that

$$V_1(\varphi^P) = h_P(S_1^1).$$

Write down explicitly the values of V_0^P and ϑ_1^P .

(c) Prove the *put-call parity* relation

$$V_0^P - V_0^C = K - S_0^1.$$

Solution 4.3

(a) Consider a self-financing strategy $\varphi^C \cong (V_0^C, \vartheta^C)$. By definition,

$$V_1(\varphi^C) = V_0^C + \vartheta_1^C \Delta S_1^1$$

Since (S^0, S^1) is the binomial model, we have that either $S_1^1 = (1+u)S_0^1$ or $S_1^1 = (1+d)S_0^1$. Also, since ϑ_1^C is \mathcal{F}_0 -measurable, it is a constant (i.e. non-random). Thus, φ satisfies $V_1(\varphi^C) = h_C(S_1^1)$ if and only if

$$V_0^C + \vartheta_1^C u S_0^1 = h_C ((1+u)S_0^1),$$

$$V_0^C + \vartheta_1^C dS_0^1 = h_C ((1+d)S_0^1).$$

Subtracting the two equalities and rearranging gives

$$\vartheta_1^C = \frac{h_C((1+u)S_0^1) - h_C((1+d)S_0^1)}{(u-d)S_0^1}.$$

It remains to find V_0^C , which we can do by substituting the value of ϑ_1^C into either of the two previous equalities (we choose the first one) to get

$$V_0^C = h_C \Big((1+u)S_0^1 \Big) - \vartheta_1^C uS_0^1 \\ = h_C \Big((1+u)S_0^1 \Big) - \frac{h_C ((1+u)S_0^1) - h_C ((1+d)S_0^1)}{(u-d)S_0^1} uS_0^1 \\ = \frac{u}{u-d} h_C \Big((1+d)S_0^1 \Big) + \frac{-d}{u-d} h_C \Big((1+u)S_0^1 \Big).$$

Note. Since $\frac{u}{u-d} + \frac{-d}{u-d} = 1$ and $\frac{u}{u-d} \in (0,1)$, we can also write $V_0^C = E^*[h_C(S_1^1)]$, where E^* denotes the expectation under the "risk-neutral" probability measure P^* given by

$$P^*[S_1^1 = (1+d)S_0^1] = \frac{u}{u-d}, \qquad P^*[S_1^1 = (1+u)S_0^1] = 1 - \frac{u}{u-d} = \frac{-d}{u-d}.$$

Updated: October 27, 2023

5/6

(b) The same reasoning as in part (a) yields

$$\vartheta_1^P = \frac{h_P((1+u)S_0^1) - h_P((1+d)S_0^1)}{(u-d)S_0^1},$$
$$V_0^P = \frac{u}{u-d}h_P((1+d)S_0^1) + \frac{-d}{u-d}h_P((1+u)S_0^1).$$

Note. For the same risk-neutral probability measure P^* as in part (a), we can write

$$V_0^P = E^*[h_P(S_1^1)].$$

(c) First we compute, for $x \in \mathbb{R}$,

$$h_P(x) - h_C(x) = \max\{0, K - x\} - \max\{0, x - K\} = K - x.$$

Using this together with parts (a) and (b) yields

$$V_0^P - V_0^C = \frac{u}{u-d} h_P \left((1+d)S_0^1 \right) + \frac{-d}{u-d} h_P \left((1+u)S_0^1 \right) - \frac{u}{u-d} h_C \left((1+d)S_0^1 \right) - \frac{-d}{u-d} h_C \left((1+u)S_0^1 \right) = \frac{u}{u-d} \left(K - (1+d)S_0^1 \right) + \frac{-d}{u-d} \left(K - (1+u)S_0^1 \right) = K - S_0^1,$$

as required.

Alternatively, we could use the expectation under the risk-neutral measure to get

$$V_0^P - V_0^C = E^*[h_P(S_1^1) - h_C(S_1^1)] = E^*[K - S_1^1] = K - E^*[S_1^1].$$

We then compute

$$\begin{split} E^*[S_1^1] &= (1+d)S_0^1 P^*[S_1^1 = (1+d)S_0^1] + (1+u)S_0^1 P^*[S_1^1 = (1+u)S_0^1] \\ &= (1+d)S_0^1 \frac{u}{u-d} + (1+u)S_0^1 \frac{-d}{u-d} \\ &= S_0^1, \end{split}$$

 $and\ hence$

$$V_0^P - V_0^C = K - S_0^1,$$

as required.

Updated: October 27, 2023