Mathematical Foundations for Finance Exercise Sheet 4

Exercise 4.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space, where $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k=0,1, \ldots, T}$. For any stopping time τ, we define

$$
\mathcal{F}_{\tau}:=\left\{A \in \mathcal{F}: A \cap\{\tau \leq k\} \in \mathcal{F}_{k} \text { for all } k=0,1, \ldots, T\right\} .
$$

(a) Show that \mathcal{F}_{τ} is a σ-algebra.
(b) Suppose σ, τ are two \mathbb{F}-stopping times with $\sigma(\omega) \leq \tau(\omega)$ for all $\omega \in \Omega$. Show that $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$. Conclude that if $\tau \equiv k_{0}$ for a fixed $k_{0} \in\{0,1, \ldots, T\}$, then we have $\mathcal{F}_{\tau}=\mathcal{F}_{k_{0}}$.
(c) If τ, σ are two \mathbb{F}-stopping times, prove that $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}=\mathcal{F}_{\tau \wedge \sigma}$. Moreover, show that $\{\sigma \leq \tau\} \in \mathcal{F}_{\tau \wedge \sigma}$, and $\{\sigma=\tau\} \in \mathcal{F}_{\tau \wedge \sigma}$.
(d) Let Y be an integrable random variable. Prove that

$$
E\left[Y \mid \mathcal{F}_{\tau}\right] \mathbb{1}_{\{\tau=k\}}=E\left[Y \mid \mathcal{F}_{k}\right] \mathbb{1}_{\{\tau=k\}} P \text {-a.s. for all } k \in\{0,1, \ldots, T\},
$$

or, equivalently,

$$
E\left[Y \mid \mathcal{F}_{\tau}\right]=\sum_{k=0}^{T} \mathbb{1}_{\{\tau=k\}} E\left[Y \mid \mathcal{F}_{k}\right] \text { P-a.s. }
$$

Solution 4.1

(a) We check the requirements for σ-algebra:

- $\Omega \in \mathcal{F}_{\tau}$ because $\Omega \cap\{\tau \leq k\}=\{\tau \leq k\} \in \mathcal{F}_{k}$ for all $k \in\{0,1, \ldots, T\}$.
- If $A \in \mathcal{F}_{\tau}$, then, for all $k \in\{0,1, \ldots, T\}$, it holds that
$A^{c} \cap\{\tau \leq k\}=\{\tau \leq k\} \cap\left(A^{c} \cup\{\tau \leq k\}^{c}\right)=\{\tau \leq k\} \cap(A \cap\{\tau \leq k\})^{c} \in \mathcal{F}_{k}$,
so that $A^{c} \in \mathcal{F}_{\tau}$.
- If $A_{n} \in \mathcal{F}_{\tau}, n \in \mathbb{N}$, we have

$$
\left(\bigcup_{n=1}^{\infty} A_{n}\right) \cap\{\tau \leq k\}=\bigcup_{n=1}^{\infty}\left(A_{n} \cap\{\tau \leq k\}\right) \in \mathcal{F}_{k}
$$

for all $k \in\{0,1, \ldots, T\}$, and so $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{F}_{\tau}$.
(b) Let $A \in \mathcal{F}_{\sigma}$ and $k \in\{0,1, \ldots, T\}$, then we have

$$
A \cap\{\tau \leq k\}=(\underbrace{A \cap\{\sigma \leq k\}}_{\in \mathcal{F}_{k}}) \cap\{\tau \leq k\} \in \mathcal{F}_{k}
$$

because $A \in \mathcal{F}_{\sigma}$, and the assumption $\tau \leq \sigma$ implies that $\{\tau \leq k\} \subseteq\{\sigma \leq k\}$. This shows that $A \in \mathcal{F}_{\tau}$, and thus $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$ by arbitrariness of $A \in \mathcal{F}_{\sigma}$.

Now, if $\tau \equiv k_{0}$ for a fixed $k_{0} \in\{0,1, \ldots, T\}$, then $\mathcal{F}_{\tau} \subset \mathcal{F}_{k_{0}}$ and $\mathcal{F}_{k_{0}} \subset \mathcal{F}_{\tau}$, which yields to the desired equality $\mathcal{F}_{k_{0}}=\mathcal{F}_{\tau}$.
(c) Part (b) gives that $\mathcal{F}_{\sigma \wedge \tau} \subseteq \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$ since $\sigma \wedge \tau \leq \sigma$ and $\sigma \wedge \tau \leq \tau$. Suppose next that $A \in \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$. We observe that

$$
\begin{aligned}
A \cap\{\sigma \wedge \tau \leq k\} & =A \cap(\{\sigma \leq k\} \cup\{\tau \leq k\}) \\
& =(\underbrace{A \cap\{\sigma \leq k\}}_{\in \mathcal{F}_{k}}) \cup(\underbrace{A \cap\{\tau \leq k\}}_{\in \mathcal{F}_{k}}) \in \mathcal{F}_{k}
\end{aligned}
$$

for all $k \in\{0,1, \ldots, T\}$. This shows $\mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau} \subseteq \mathcal{F}_{\sigma \wedge \tau}$ and hence $\mathcal{F}_{\sigma \wedge \tau}=\mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$. To prove the remaining claims, note that, for each $k \in\{0,1, \ldots, T\}$,
$\{\sigma \leq \tau\} \cap\{\tau \leq k\}=\bigcup_{i=0}^{k}(\{\sigma \leq \tau\} \cap\{\tau=i\})=\bigcup_{i=0}^{k}(\{\sigma \leq i\} \cap\{\tau=i\}) \in \mathcal{F}_{k}$.
Thus $\{\sigma \leq \tau\} \in \mathcal{F}_{\tau}$. Similarly, we have

$$
\{\sigma \leq \tau\} \cap\{\sigma \leq k\}=\{\sigma \wedge k \leq \tau \wedge k\} \cap\{\sigma \leq k\} \in \mathcal{F}_{k}
$$

because $\sigma \wedge k$ and $\tau \wedge k$ are both \mathbb{F}-stopping times, and so $\{\sigma \wedge k \leq \tau \wedge k\} \in$ $\mathcal{F}_{\tau \wedge k} \subseteq \mathcal{F}_{k}$ by the previous step. Hence,

$$
\{\sigma \leq \tau\} \in \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}=\mathcal{F}_{\sigma \wedge \tau} .
$$

The last assertion follows from the fact that $\{\sigma=\tau\}=\{\sigma \leq \tau\} \cap\{\tau \leq \sigma\}$.
(d) Let us fix $k \in\{0,1, \ldots, T\}$, and denote by LHS and RHS the left- and righthand sides of

$$
E\left[Y \mid \mathcal{F}_{\tau}\right] \mathbb{1}_{\{\tau=k\}}=E\left[Y \mid \mathcal{F}_{k}\right] \mathbb{1}_{\{\tau=k\}},
$$

respectively. Now, note that RHS is \mathcal{F}_{k}-measurable since $\{\tau=k\} \in \mathcal{F}_{k}$. Moreover, $\{\tau=k\} \in \mathcal{F}_{\tau}$ by part (c), and thus the random variable $\mathbb{1}_{\{\tau=k\}}$ is \mathcal{F}_{τ}-measurable. It follows that

$$
\mathrm{LHS}=E\left[Y \mathbb{1}_{\{\tau=k\}} \mid \mathcal{F}_{\tau}\right] P \text {-a.s.. }
$$

For any $A \in \mathcal{F}_{\tau}$ it holds that $A \cap\{\tau=k\}=(A \cap\{\tau \leq k\}) \cap\{\tau=k\} \in \mathcal{F}_{k}$, where $k \in\{0,1, \ldots, T\}$. Then,

$$
\begin{aligned}
E\left[Y \mathbb{1}_{\{\tau=k\}} \mathbb{1}_{A}\right] & =E\left[Y \mathbb{1}_{A \cap\{\tau=k\}}\right]=E\left[E\left[Y \mid \mathcal{F}_{k}\right] \mathbb{1}_{A \cap\{\tau=k\}}\right] \\
& =E\left[E\left[Y \mid \mathcal{F}_{k}\right] \mathbb{1}_{\{\tau=k\}} \mathbb{1}_{A}\right]=E\left[\operatorname{RHS}_{A}\right],
\end{aligned}
$$

which shows that

$$
\text { RHS }=E\left[Y \mathbb{1}_{\{\tau=k\}} \mid \mathcal{F}_{\tau}\right]=\text { LHS } P \text {-a.s. }
$$

Exercise 4.2 Let $\left(S_{0}, S_{1}\right)$ be the (discounted) trinomial model with $T=1$. This is a special case of the multinomial model where $S_{0}^{1}=s_{0}^{1}$, for $s_{0}^{1}>0, S_{1}^{1}=Y S_{0}^{1} /(1+r)$, for some $r>-1$ and

$$
Y_{k}= \begin{cases}1+d & \text { with probability } p_{1} \\ 1+m & \text { with probability } p_{2} \\ 1+u & \text { with probability } p_{3}\end{cases}
$$

where $-1<d<m<u$, and $p_{1}, p_{2}, p_{3}>0$ such that $p_{1}+p_{2}+p_{3}=1$. The filtration \mathbb{F} we consider is given by $\mathcal{F}_{0}:=\{\varnothing, \Omega\}, \mathcal{F}_{1}:=\sigma(Y)$.
(a) Assume that $d=-0.5, m=0, u=0.25$ and $r=0$, and consider an arbitrary self-financing strategy $\varphi \hat{=}\left(V_{0}, \theta\right)$. Show that if the total gain $G_{1}(\theta)$ at time $T=1$ is non-negative P-a.s., then

$$
P\left[G_{1}(\theta)=0\right]=1
$$

What does this property imply?
(b) Show that S^{1} is arbitrage-free by constructing an equivalent martingale measure (EMM) for S^{1}.
Hint: A probability measure Q equivalent to P on \mathcal{F}_{1} can be uniquely described by a probability vector $\left(q_{1}, q_{2}, q_{3}\right) \in(0,1)^{3}$ whose coordinates sum up to 1 , where $q_{k}=Q\left[Y_{1}=1+y_{k}\right], k=1,2,3$, using the notation $y_{1}:=d, y_{2}:=m$ and $y_{3}:=u$.

Solution 4.2

(a) Let us compute the total gain $G_{1}(\theta)$ at time $T=1$:

$$
\begin{aligned}
G_{1}(\theta)=\theta_{1}^{1} \Delta S_{1}^{1}=\theta_{1}^{1}\left(S_{1}^{1}-S_{0}^{1}\right) & =\theta_{1}^{1} S_{0}^{1}\left(\frac{Y_{1}}{1+r}-1\right) \\
& =\theta_{1}^{1} S_{0}^{1} \times \begin{cases}\frac{d-r}{1+r} & \text { with probability } p_{1} \\
\frac{m-r}{1+r} & \text { with probability } p_{2}, \\
\frac{u-r}{1+r} & \text { with probability } p_{3} .\end{cases}
\end{aligned}
$$

Recall that $u-r=0.25>0$ and $d-r=-0.5<0$. Hence $P\left[G_{1}(\theta) \geq 0\right]=1$ if and only if $\theta_{1}^{1} S_{0}^{1}=0$. As a result, we can conclude that

$$
P\left[G_{1}(\theta) \geq 0\right]=1 \quad \Longleftrightarrow \quad \theta_{1}^{1}=0 \quad \Longleftrightarrow \quad P\left[G_{1}(\theta)=0\right]=1
$$

Assume now that $V_{0}=0$ and note that in this case $V_{1}(\varphi)=G_{1}(\theta)$. The above argument proves that if $V_{1}(\varphi) \geq 0 P$-a.s., then $V_{1}(\varphi)=0 P$-a.s., and by Proposition 1.1 in the lecture notes, we know that this is equivalent to saying that S^{1} is arbitrage-free.
(b) Let $\left(q_{1}, q_{2}, q_{3}\right) \in(0,1)^{3}$ be a probability vector and Q be defined by

$$
Q\left[Y_{1}=1+y_{k}\right]:=q_{k}, k=1,2,3,
$$

where $y_{1}:=d, y_{2}:=m$ and $y_{3}:=u$. Then S^{1} is a Q-martingale if and only if S^{1} is adapted to the considered filtration (note that the filtration generated Y is equivalently generated by S^{1}), integrable (the probability space is finite here, so all random variables are integrable), and

$$
\begin{aligned}
E_{Q}\left[S_{1}^{1}\right]=S_{0}^{1} & \Longleftrightarrow E_{Q}\left[S_{0}^{1} Y_{1} /(1+r)\right]=S_{0}^{1} \\
& \Longleftrightarrow E_{Q}\left[Y_{1}\right]=1+r \\
& \Longleftrightarrow q_{1} \times(1+d)+q_{2} \times(1+m)+q_{3} \times(1+u)=1+r \\
& \Longleftrightarrow q_{1} \times d+q_{2} \times m+q_{3} \times u=r \\
& \Longleftrightarrow-0.5 q_{1}+0 q_{2}+0.25 q_{3}=0 \\
& \Longleftrightarrow q_{3}=2 q_{1} .
\end{aligned}
$$

Recall that in order to make Q a probability measure, we need to have $q_{1}+q_{2}+$ $q_{3}=1$; hence choosing $q_{1}=0.25$, we obtain that $q_{3}=0.5$ and $q_{2}=0.25$. Noting that $q_{1}, q_{2}, q_{3} \in(0,1)$, we can also observe that Q is a probability measure equivalent to P and thus an EMM for S^{1}.

More generally, we can set $q_{1}:=\alpha$ to get $q_{3}=2 \alpha$ and $q_{2}=1-q_{1}-q_{3}=1-3 \alpha$. Then q_{1}, q_{2} and q_{3} are all in $(0,1)$ if and only if $\alpha \in\left(0, \frac{1}{3}\right)$.

Exercise 4.3 Let $\left(S^{0}, S^{1}\right)$ be the (discounted) binomial model with $T=1, p \in(0,1)$, and $u>0>d>-1$. Fix some $K>0$, and define the functions $h_{C}, h_{P}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
h_{C}(x) & :=(x-K)^{+}:=\max \{0, x-K\}, \\
h_{P}(x) & :=(K-x)^{+}:=\max \{0, K-x\} .
\end{aligned}
$$

The European options with payoff functions h_{C} and h_{P} are called the European call option and the European put option, respectively.
(a) Construct a self-financing strategy $\varphi^{C} \hat{=}\left(V_{0}^{C}, \vartheta^{C}\right)$ such that

$$
V_{1}\left(\varphi^{C}\right)=h_{C}\left(S_{1}^{1}\right)
$$

Write down explicitly the values of V_{0}^{C} and ϑ_{1}^{C}.
(b) Construct a self-financing strategy $\varphi^{P} \widehat{=}\left(V_{0}^{P}, \vartheta^{P}\right)$ such that

$$
V_{1}\left(\varphi^{P}\right)=h_{P}\left(S_{1}^{1}\right)
$$

Write down explicitly the values of V_{0}^{P} and ϑ_{1}^{P}.
(c) Prove the put-call parity relation

$$
V_{0}^{P}-V_{0}^{C}=K-S_{0}^{1} .
$$

Solution 4.3

(a) Consider a self-financing strategy $\varphi^{C} \hat{=}\left(V_{0}^{C}, \vartheta^{C}\right)$. By definition,

$$
V_{1}\left(\varphi^{C}\right)=V_{0}^{C}+\vartheta_{1}^{C} \Delta S_{1}^{1} .
$$

Since $\left(S^{0}, S^{1}\right)$ is the binomial model, we have that either $S_{1}^{1}=(1+u) S_{0}^{1}$ or $S_{1}^{1}=(1+d) S_{0}^{1}$. Also, since ϑ_{1}^{C} is \mathcal{F}_{0}-measurable, it is a constant (i.e. non-random). Thus, φ satisfies $V_{1}\left(\varphi^{C}\right)=h_{C}\left(S_{1}^{1}\right)$ if and only if

$$
\begin{aligned}
V_{0}^{C}+\vartheta_{1}^{C} u S_{0}^{1} & =h_{C}\left((1+u) S_{0}^{1}\right) \\
V_{0}^{C}+\vartheta_{1}^{C} d S_{0}^{1} & =h_{C}\left((1+d) S_{0}^{1}\right)
\end{aligned}
$$

Subtracting the two equalities and rearranging gives

$$
\vartheta_{1}^{C}=\frac{h_{C}\left((1+u) S_{0}^{1}\right)-h_{C}\left((1+d) S_{0}^{1}\right)}{(u-d) S_{0}^{1}} .
$$

It remains to find V_{0}^{C}, which we can do by substituting the value of ϑ_{1}^{C} into either of the two previous equalities (we choose the first one) to get

$$
\begin{aligned}
V_{0}^{C} & =h_{C}\left((1+u) S_{0}^{1}\right)-\vartheta_{1}^{C} u S_{0}^{1} \\
& =h_{C}\left((1+u) S_{0}^{1}\right)-\frac{h_{C}\left((1+u) S_{0}^{1}\right)-h_{C}\left((1+d) S_{0}^{1}\right)}{(u-d) S_{0}^{1}} u S_{0}^{1} \\
& =\frac{u}{u-d} h_{C}\left((1+d) S_{0}^{1}\right)+\frac{-d}{u-d} h_{C}\left((1+u) S_{0}^{1}\right) .
\end{aligned}
$$

Note. Since $\frac{u}{u-d}+\frac{-d}{u-d}=1$ and $\frac{u}{u-d} \in(0,1)$, we can also write $V_{0}^{C}=E^{*}\left[h_{C}\left(S_{1}^{1}\right)\right]$, where E^{*} denotes the expectation under the "risk-neutral" probability measure P^{*} given by

$$
P^{*}\left[S_{1}^{1}=(1+d) S_{0}^{1}\right]=\frac{u}{u-d}, \quad P^{*}\left[S_{1}^{1}=(1+u) S_{0}^{1}\right]=1-\frac{u}{u-d}=\frac{-d}{u-d}
$$

(b) The same reasoning as in part (a) yields

$$
\begin{aligned}
\vartheta_{1}^{P} & =\frac{h_{P}\left((1+u) S_{0}^{1}\right)-h_{P}\left((1+d) S_{0}^{1}\right)}{(u-d) S_{0}^{1}} \\
V_{0}^{P} & =\frac{u}{u-d} h_{P}\left((1+d) S_{0}^{1}\right)+\frac{-d}{u-d} h_{P}\left((1+u) S_{0}^{1}\right)
\end{aligned}
$$

Note. For the same risk-neutral probability measure P^{*} as in part (a), we can write

$$
V_{0}^{P}=E^{*}\left[h_{P}\left(S_{1}^{1}\right)\right] .
$$

(c) First we compute, for $x \in \mathbb{R}$,

$$
h_{P}(x)-h_{C}(x)=\max \{0, K-x\}-\max \{0, x-K\}=K-x .
$$

Using this together with parts (a) and (b) yields

$$
\begin{aligned}
V_{0}^{P}-V_{0}^{C}= & \frac{u}{u-d} h_{P}\left((1+d) S_{0}^{1}\right)+\frac{-d}{u-d} h_{P}\left((1+u) S_{0}^{1}\right) \\
& -\frac{u}{u-d} h_{C}\left((1+d) S_{0}^{1}\right)-\frac{-d}{u-d} h_{C}\left((1+u) S_{0}^{1}\right) \\
= & \frac{u}{u-d}\left(K-(1+d) S_{0}^{1}\right)+\frac{-d}{u-d}\left(K-(1+u) S_{0}^{1}\right) \\
= & K-S_{0}^{1},
\end{aligned}
$$

as required.
Alternatively, we could use the expectation under the risk-neutral measure to get

$$
V_{0}^{P}-V_{0}^{C}=E^{*}\left[h_{P}\left(S_{1}^{1}\right)-h_{C}\left(S_{1}^{1}\right)\right]=E^{*}\left[K-S_{1}^{1}\right]=K-E^{*}\left[S_{1}^{1}\right] .
$$

We then compute

$$
\begin{aligned}
E^{*}\left[S_{1}^{1}\right] & =(1+d) S_{0}^{1} P^{*}\left[S_{1}^{1}=(1+d) S_{0}^{1}\right]+(1+u) S_{0}^{1} P^{*}\left[S_{1}^{1}=(1+u) S_{0}^{1}\right] \\
& =(1+d) S_{0}^{1} \frac{u}{u-d}+(1+u) S_{0}^{1} \frac{-d}{u-d} \\
& =S_{0}^{1}
\end{aligned}
$$

and hence

$$
V_{0}^{P}-V_{0}^{C}=K-S_{0}^{1}
$$

as required.

