Mathematical Foundations for Finance Exercise Sheet 4

Please hand in your solutions by 12:00 on Wednesday, October 25 via the course homepage.

Exercise 4.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space, where $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k=0,1, \ldots, T}$. For any stopping time τ, we define

$$
\mathcal{F}_{\tau}:=\left\{A \in \mathcal{F}: A \cap\{\tau \leq k\} \in \mathcal{F}_{k} \text { for all } k=0,1, \ldots, T\right\}
$$

(a) Show that \mathcal{F}_{τ} is a σ-algebra.
(b) Suppose σ, τ are two stopping times with $\sigma(\omega) \leq \tau(\omega)$ for all $\omega \in \Omega$. Show that $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$. Conclude that if $\tau \equiv k_{0}$ for a fixed $k_{0} \in\{0,1, \ldots, T\}$, then we have that $\mathcal{F}_{\tau}=\mathcal{F}_{k_{0}}$.
(c) If τ, σ are two stopping times, prove that $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}=\mathcal{F}_{\tau \wedge \sigma}$. Moreover, show that $\{\sigma \leq \tau\} \in \mathcal{F}_{\tau \wedge \sigma}$, and $\{\sigma=\tau\} \in \mathcal{F}_{\tau \wedge \sigma}$.
(d) Let Y be an integrable random variable. Prove that

$$
E\left[Y \mid \mathcal{F}_{\tau}\right] \mathbb{1}_{\{\tau=k\}}=E\left[Y \mid \mathcal{F}_{k}\right] \mathbb{1}_{\{\tau=k\}} P \text {-a.s. for all } k \in\{0,1, \ldots, T\}
$$

or, equivalently,

$$
E\left[Y \mid \mathcal{F}_{\tau}\right]=\sum_{k=0}^{T} \mathbb{1}_{\{\tau=k\}} E\left[Y \mid \mathcal{F}_{k}\right] P \text {-a.s. }
$$

Exercise 4.2 Let $\left(S^{0}, S^{1}\right)$ be the (discounted) trinomial model with $T=1$. This is a special case of the multinomial model where $S_{0}^{1}=s_{0}^{1}$, for $s_{0}^{1}>0, S_{1}^{1}=Y S_{0}^{1} /(1+r)$, for some $r>-1$ and

$$
Y= \begin{cases}1+d & \text { with probability } p_{1} \\ 1+m & \text { with probability } p_{2} \\ 1+u & \text { with probability } p_{3}\end{cases}
$$

where $-1<d<m<u$, and $p_{1}, p_{2}, p_{3}>0$ such that $p_{1}+p_{2}+p_{3}=1$. The filtration \mathbb{F} we consider is given by $\mathcal{F}_{0}:=\{\varnothing, \Omega\}, \mathcal{F}_{1}:=\sigma(Y)$.
(a) Assume that $d=-0.5, m=0, u=0.25$ and $r=0$ and consider an arbitrary self-financing strategy $\varphi \hat{=}\left(V_{0}, \theta\right)$. Show that if the total gain $G_{1}(\theta)$ at time
$T=1$ is non-negative P-a.s., then

$$
P\left[G_{1}(\theta)=0\right]=1
$$

What does this property imply?
(b) Show that S^{1} is arbitrage-free by constructing an equivalent martingale measure (EMM) for S^{1}.
Hint: A probability measure Q equivalent to P on \mathcal{F}_{1} can be uniquely described by a probability vector $\left(q_{1}, q_{2}, q_{3}\right) \in(0,1)^{3}$ whose coordinates sum up to 1 , where $q_{k}:=Q\left[Y_{1}=1+y_{k}\right], k=1,2,3$, using the notation $y_{1}:=d, y_{2}:=m$ and $y_{3}:=u$.

Exercise 4.3 Let $\left(S^{0}, S^{1}\right)$ be the (discounted) binomial model with $T=1, p \in(0,1)$, and $u>0>d>-1$. For some $K>0$, we define the functions $h_{C}, h_{P}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& h_{C}(x):=(x-K)^{+}:=\max \{0, x-K\}, \\
& h_{P}(x):=(K-x)^{+}:=\max \{0, K-x\} .
\end{aligned}
$$

The European options with payoff functions h_{C} and h_{P} are called the European call option and the European put option, respectively.
(a) Construct a self-financing strategy $\varphi^{C} \hat{=}\left(V_{0}^{C}, \vartheta^{C}\right)$ such that

$$
V_{1}\left(\varphi^{C}\right)=h_{C}\left(S_{1}^{1}\right)
$$

Write down explicitly the values of V_{0}^{C} and ϑ_{1}^{C}.
(b) Construct a self-financing strategy $\varphi^{P} \widehat{=}\left(V_{0}^{P}, \vartheta^{P}\right)$ such that

$$
V_{1}\left(\varphi^{P}\right)=h_{P}\left(S_{1}^{1}\right)
$$

Write down explicitly the values of V_{0}^{P} and ϑ_{1}^{P}.
(c) Prove the put-call parity relation

$$
V_{0}^{P}-V_{0}^{C}=K-S_{0}^{1}
$$

