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Exercise 5.1 Let (€2, F, P) be a probability space and Y a random variable normally
distributed such that ¥ ~ N(0,1).

(a) Fix a constant § € (0, 1), and consider the random variable

Z = exp <—(; - p)Y — W) .

Define the map @ : F — R by Q[A] := E[Z1 4]. Prove that @ is a probability
measure on (2, F), and that it is equivalent to P.

(b) Set
Sp=ef and Sti=e".

Prove that @ is an equivalent martingale measure for S' = (S}, S]), with
respect to the filtration F = (Fy, F1) given by Fy := {@,Q} and F; := F.

Hint: The statement Q[A] = E[Z1,4] for all A € F is equivalent to the
statement Eq[U] = E[ZU] for all nonnegative random variables U.

(c) Now consider the market (S°, S'), where S® = 1 represents a bank account and
St is as in part (b). Fix some K > 0 and define the function C': R — R by

C(x) = (r — K)* := max{z — K, 0}.

Compute V& := Eg[C(S])] in terms of the cumulative distribution function of
a standard normal random variable.

Solution 5.1
(a) In order for @ to be a probability measure, we need to verify that
o Q[A] €10,1] for all A € F;
« Q2] =0;
o QU A =30 QA,] for any disjoint family of sets (A, )nen.

First, note that since Y is a standard normal random variable, Z is integrable
(and nonnegative), and thus @ is a well-defined function with values in [0, 00).
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Moreover,
1

Qi = Blz10) = 512) = oxp (-2 Blesp (- 9v)] = 1.

since the moment- generamng function of a standard normal random variable is
¢(t) = E[e™] = exp(5). Also, we have Q[@] = E[Z1,] = E[0] = 0. Next, if
Ay, Ag, ... € F are dlSJOlIlt then T~ , =332, 14,, and so

n=1

Q Lgl An] —E[Z1y= 4] =F E:l Z]lAnl .

Since Z is nonnegative, then 0 < Z 124y, T30 Z1 4, as N — oo, and
thus the monotone convergence theorem implies that

00 N 00
n=1 n=1 IS n=1

Hence, we have
@“ﬁﬁ:ZMA
n=1 n=1
We can conclude that @ is a probability measure on (2, F).

It remains to show that ) ~ P. To this end, let A € F with P[A] = 0. Then
Z14 =0 P-a.s, and thus

Q[A] = E[Z1.4] = E[0] = 0.

Hence, @ < P. Conversely, suppose that A € F with Q[A] = 0. This means
that E[Z14] = 0. Since Z1 4 is nonnegative, then Z1,4 = 0 P-a.s. Also, since
Z >0, then Z1 4 = 0 exactly when 14 = 0, and so 14 = 0 P-a.s, i.e. P[A] = 0.
It follows that P < @, and hence ) =~ P, as required.

Since @ ~ P by part (a), it remains to show that S' is a Q-martingale. Tt is
immediate that S! is F-adapted. Also, since Si > 0, we have E|[|S]|] = E[S]],
and by the hint,

%wbmmmﬂ@4«w><*mﬂ

2
- s (=52 o (4 99)] = (25 =)

=e? < o0,

using again that E[e!Y] = exp(%). Thus, S! is Q-integrable. Finally, we note
that since JFy is the trivial o-field, then by Exercise 1.3(c),

EqlSi | Fol = EqlSi] = ¢” = S;.
This completes the proof.
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(c) We have that
Vi’ = EqlC(81)] = Eq(Si — K)T] = E[Z(S] — K)7]

= exp (—2_B)> E {exp (—(% — B)Y) (¥ — K)]l{ey>K}} :

2
Since the distribution of Y has density fy(y) = \/% exp(—%), and also since
{e¥ > K} ={Y > log K}, we can write
Blexp (~(3 = OY) ("~ K)lgrong] = = [ e (e~ K)e % ay
2 271 Jlog K

The integrand can be rewritten as

eGPV — K)o = % _ Ko GPvt

_w=(B+3)? (B+3)? _w=(B=3»? (8-3)?
2

=e e 2 —Ke =7 2z e 2 |

and so

[e'¢] 142 %) _ 11,2
1 / e—(%—ﬁ)y(ey — K)e_% dy = 67(/8+22) / LI (ﬁ2+2>) dy
1

— —€
og K 4/ 21

vV 27 Jlog K
(-5 oo 1 (v—(B—3)2
_Kef/ L g
log K / 2 Y
(B+3)? 1
=e 2 PY + 3+ ;> logK]
(B-%)2

—Ke 2 P[Y + -3 >logK],

since the above two integrands are the densities of the random variables Y 43 —l—%
and Y + 8 — 1, respectively. Letting ®(z) := P[Y < ] denote the cumulative
distribution function of a standard normal random variable, we can rewrite
the above as

y2 (8+3)?

(e —K)e z dy=e

1 o 1

- —(5-By O(—log K + _|_l

\/27T~/10gK6 ( 08 b 2)
(8-3)2

—e 2 K®(—logK+—3).

(3=

Remembering that V¢ is the product of exp(— 5

we get

) and the above difference,

o ~(3-8%+(B+3)° 1 1
Vo' =e 2 P(—log K+ 5+ 3) — K®(—log K + 3 — 3)
— "B(—log K + B+ 1) — K®(—log K + 8 — 1).

This completes the problem.
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Exercise 5.2 Let (Q,F,F, P) be a filtered probability space, and T" € N. Let
Y = (Yx) k=017 be an integrable, F-adapted process, and define the F-adapted

Ur =Yy
Uk:max(Yk,E[Uk+1|]:k]) for k=0,1,...,7 —1.

The process U is called the Snell envelope of Y. For simplicity, we suppose that

.....

-----

P-a.s. forall k =0,1,...,T, then we have V), > U, P-a.s. forallk =0,1,...,T
as well.
Hint: Proceed by backward induction.

(b) Show that if Y is a supermartingale, then Uy = Y}, P-a.s. for all k =
and if Y is a submartingale, then U, = E'[Yr | Fi] P-a.s. for all k =
Hint: Proceed by backward induction.

0,1,...,T,
0,1,...,T.

(c¢) Using your result from @, show that if Y is a submartingale, then U is a
martingale.

-----

is a supermartingale.

Let us now define
mi=inf{k € {0,1,....T} : Uy = Yi}.

(e) Show that 7* is an F-stopping time. Furthermore, show that the stopped
process U™ is a martingale and, in particular, that Uy = E [Y,+].

Solution 5.2

(a) Adaptedness of U is immediate since the maximum of a two measurable
functions is again a measurable function. Integrability follows by backward
induction:

e Yr € L'(P) by assumption.

 Suppose now that U, € L'(P) for some n € {1,...,T}; we want to show
that this implies U,,_; € L'(P). We have

E[|Upoa]] = B [|max (Yooy, E[U, | Foca] )]
< E [max (|Yai|, |E[Un | Faci] )]
< B [max ([Yoi|, E(|UW| | Faci) )| < E[Yacill + E[JU]] < o0,
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where the second inequality uses Jensen’s inequality for conditional ex-
pectations.

Moreover, by the definition of the process U, Ur = Y7 and Uy, > E [Ugi1 | Fil
for k = 0,1,...,7 — 1, so that the Snell envelope U of the process Y is a
supermartingale, and U, > Yy forall k = 0,1, ..., T by construction. It remains

.....

supermartingale dominating Y. We have to show that V' dominates U as well.
We again proceed by backward induction:

o First, since Ur = Yy and V dominates Y, we have that Vi > Ur.

e Suppose now that V,, > U, for some n € {1,...,T}; we want to show
that this implies V,,_1 > U,,_1. We have

anl 2 E [Vn “anl] 2 E [Un ’anl] 3

where the first inequality uses the supermartingale property of V' and the
second one uses the induction hypothesis. Furthermore, since V' dominates
Y, we also have that V,,_; > Y,,_;. Combining the two results, we get

Vo—1 2 max (Ynfb E [Un “anl]) = U,
as desired.

(b) We proceed by backward induction in both cases. Let us first assume that Y
is a supermartingale:

e By the definition of U, we have that Ur = Yr.

« Suppose now that U, =Y, for some n € {1,...,T}; we want to show
that this implies U,,_1 = Y,,_1. We have

Un-y = max (Y1, E[U, | Foca] ) = max (Yoo, B [Ya | Foca] ) = Yai.

The last equality follows since F[Y,, | F,—1] < Y,_1 by the assumption
that Y is a supermartingale.

Let Y be a submartingale:
« Since Y is F-adapted, we have that Uy = Yy = E [Yr | Fr].

» Suppose now that U, = E[Yr |F,] for some n € {1,...,T}; we want to
show that this implies U,,_1 = E'[Yr | F,_1]. We have

Un-y = max (Yo 1, B[Uy | Faa] ) = max (Yoo, E[E [Yr | F] | Foa] )
= max (Y1, E[Yr| Foca] ) = E[Yr| Facal.

The third equality uses the tower property of conditional expectations
and the last one that F [Yr | F,_1] > Y,,_1 by the assumption that YV is a
submartingale.
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()

Since we know that U is a supermartingale, it is integrable and F-adapted.
Furthermore, we know from [(b)| that Uy = E[Yr|F] for all k = 0,1,...,T.
Therefore, we have for all k =0,1,...,7 — 1 that

E U1 | Fil = E[E [Yr | Frsi] | Fi] = E [Yr | Fi] = Uy,

where the second equality uses the tower property of conditional expectations.
This is the martingale property of U, so U is in fact a martingale.

Note that we have for all k € {0,1,...,7 — 1} that
U(k+1)/\r — Uinr = ]l{k+1§‘r}(Uk:+1 - Uk)- (1)

The supermartingale property of U™ now immediately follows from the super-
martingale property of U:

E\Ugyiyar —Urnr

]:k] =LK []l{k—i-lé-r}(UkJrl_Uk) ‘-Fk}

= Lep1<n B (U — Ui | Fi] <0,
where the third equality uses that 1yz11<;3 = 1 — 1{;<4y is Fp-measurable
and the last inequality holds by our assumption that U is a supermartingale.

Adaptedness and integrability of a general stopped process follow from its
stochastic integral representation analogous to the solution of Exercise 3.1 (c).

First note that since Ur = Yr by construction, 7* < T. For k =0,1,...,T,
the set
{T <k} ={r>k}={Yo < Uy,....Yr < U}
:{}/O—UO<0,...,Y]€—U]€<O}
is in JFy, since both U and Y are F-adapted processes and the difference of two
real-valued Fj-measurable random variables is a real-valued Fj-measurable

random variable. Hence, {r* < k} € F; for £ = 0,1,...,7 and 7" is an
F-stopping time.

Now we show that U is a not only a supermartingale, but actually a true
martingale. Note that Upliri1<r+y = E [Upy1 | Fi] Ligg1<-+y by the definition
of Snell envelope and the definition of the stopping time 7*: If k < 7% <=
k+1 < 7* then we must have Uy # Y} which implies Uy > Y} and thus giving
Ur = E'[Uyy1 | Fx]. Hence, using , we have
Utkriynrs — Uenes = Lpri<rey (Uppr — Uy) = ]l{k+1§7—*}(Uk+1 — E U1 | Fi )
This then implies that
E [U(Hl)/\r* — Ugnre

which is the martingale property of U™ . In particular, we have E [Upn.«] = Uy
by Corollary 1.3.2 in the lecture notes. Moreover, since 7* < T', we have

E [Y;'*] =L [YT/\T*] = E[UT/\T*] = E[UT*] = UO-

fk} = Lpr1<ry B [Up1 = E Ui [ Fi] [ Fi] = 0,
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