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Exercise 5.1 Let (Ω,F , P ) be a probability space and Y a random variable normally
distributed such that Y ∼ N (0, 1).

(a) Fix a constant β ∈ (0, 1
2), and consider the random variable

Z := exp
(
−(1

2 − β)Y −
(1

2 − β)2

2

)
.

Define the map Q : F → R by Q[A] := E[Z1A]. Prove that Q is a probability
measure on (Ω,F), and that it is equivalent to P .

(b) Set
S1

0 := eβ and S1
1 := eY .

Prove that Q is an equivalent martingale measure for S1 = (S1
0 , S

1
1), with

respect to the filtration F = (F0,F1) given by F0 := {∅,Ω} and F1 := F .

Hint: The statement Q[A] = E[Z1A] for all A ∈ F is equivalent to the
statement EQ[U ] = E[ZU ] for all nonnegative random variables U .

(c) Now consider the market (S0, S1), where S0 ≡ 1 represents a bank account and
S1 is as in part (b). Fix some K > 0 and define the function C : R→ R by

C(x) = (x−K)+ := max{x−K, 0}.

Compute V C
0 := EQ[C(S1

1)] in terms of the cumulative distribution function of
a standard normal random variable.

Solution 5.1

(a) In order for Q to be a probability measure, we need to verify that

• Q[A] ∈ [0, 1] for all A ∈ F ;

• Q[∅] = 0;

• Q[∪∞n=1An] = ∑∞
n=1Q[An] for any disjoint family of sets (An)n∈N.

First, note that since Y is a standard normal random variable, Z is integrable
(and nonnegative), and thus Q is a well-defined function with values in [0,∞).
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Moreover,

Q[Ω] = E[Z1Ω] = E[Z] = exp
(
−

(1
2 − β)2

2

)
E
[
exp

(
−(1

2 − β)Y
)]

= 1,

since the moment-generating function of a standard normal random variable is
φ(t) = E[etY ] = exp( t22 ). Also, we have Q[∅] = E[Z1∅] = E[0] = 0. Next, if
A1, A2, . . . ∈ F are disjoint, then 1⋃∞

n=1 An
= ∑∞

n=1 1An , and so

Q

[ ∞⋃
n=1

An

]
= E

[
Z1⋃∞

n=1 An

]
= E

[ ∞∑
n=1

Z1An

]
.

Since Z is nonnegative, then 0 6
∑N
n=1 Z1An ↑

∑∞
n=1 Z1An as N → ∞, and

thus the monotone convergence theorem implies that

E

[ ∞∑
n=1

Z1An

]
= lim

N→∞
E

[
N∑
n=1

Z1An

]
= lim

N→∞

N∑
n=1

E[Z1An ] =
∞∑
n=1

E[Z1An ].

Hence, we have

Q

[ ∞⋃
n=1

An

]
=
∞∑
n=1

Q[An].

We can conclude that Q is a probability measure on (Ω,F).

It remains to show that Q ≈ P . To this end, let A ∈ F with P [A] = 0. Then
Z1A = 0 P -a.s, and thus

Q[A] = E[Z1A] = E[0] = 0.

Hence, Q� P . Conversely, suppose that A ∈ F with Q[A] = 0. This means
that E[Z1A] = 0. Since Z1A is nonnegative, then Z1A = 0 P -a.s. Also, since
Z > 0, then Z1A = 0 exactly when 1A = 0, and so 1A = 0 P -a.s, i.e. P [A] = 0.
It follows that P � Q, and hence Q ≈ P , as required.

(b) Since Q ≈ P by part (a), it remains to show that S1 is a Q-martingale. It is
immediate that S1 is F-adapted. Also, since S1

1 > 0, we have E[|S1
1 |] = E[S1

1 ],
and by the hint,

EQ[S1
1 ] = E[ZS1

1 ] = E

[
exp

(
(1

2 + β)Y −
(1

2 − β)2

2

)]

= exp
(
−

(1
2 − β)2

2

)
E
[
exp

(
(1

2 + β)Y
)]

= exp
(

(1
2 + β)2 − (1

2 − β)2

2

)
= eβ <∞,

using again that E[etY ] = exp( t22 ). Thus, S1 is Q-integrable. Finally, we note
that since F0 is the trivial σ-field, then by Exercise 1.3(c),

EQ[S1
1 | F0] = EQ[S1

1 ] = eβ = S1
0 .

This completes the proof.
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(c) We have that

V C
0 = EQ[C(S1

1)] = EQ[(S1
1 −K)+] = E[Z(S1

1 −K)+]

= exp
(
−

(1
2 − β)2

2

)
E
[
exp

(
−(1

2 − β)Y
)

(eY −K)1{eY >K}
]
.

Since the distribution of Y has density fY (y) = 1√
2π exp(−y2

2 ), and also since
{eY > K} = {Y > logK}, we can write

E
[
exp

(
−(1

2 − β)Y
)

(eY −K)1{eY >K}
]

= 1√
2π

∫ ∞
logK

e−( 1
2−β)y(ey −K)e−

y2
2 dy.

The integrand can be rewritten as

e−( 1
2−β)y(ey −K)e−

y2
2 = e( 1

2 +β)y− y
2

2 −Ke−( 1
2−β)y− y

2
2

= e−
(y−(β+ 1

2 ))2

2 e
(β+ 1

2 )2

2 −Ke−
(y−(β− 1

2 ))2

2 e
(β− 1

2 )2

2 ,

and so

1√
2π

∫ ∞
logK

e−( 1
2−β)y(ey −K)e−

y2
2 dy = e

(β+ 1
2 )2

2

∫ ∞
logK

1√
2π
e−

(y−(β+ 1
2 ))2

2 dy

−Ke
(β− 1

2 )2

2

∫ ∞
logK

1√
2π
e−

(y−(β− 1
2 ))2

2 dy

= e
(β+ 1

2 )2

2 P [Y + β + 1
2 > logK]

−Ke
(β− 1

2 )2

2 P [Y + β − 1
2 > logK],

since the above two integrands are the densities of the random variables Y +β+ 1
2

and Y + β − 1
2 , respectively. Letting Φ(x) := P [Y 6 x] denote the cumulative

distribution function of a standard normal random variable, we can rewrite
the above as

1√
2π

∫ ∞
logK

e−( 1
2−β)y(ey −K)e−

y2
2 dy = e

(β+ 1
2 )2

2 Φ(− logK + β + 1
2)

− e
(β− 1

2 )2

2 KΦ(− logK + β − 1
2).

Remembering that V C
0 is the product of exp(− ( 1

2−r)
2

2 ) and the above difference,
we get

V C
0 = e

−( 1
2−β)2+(β+ 1

2 )2

2 Φ(− logK + β + 1
2)−KΦ(− logK + β − 1

2)
= eβΦ(− logK + β + 1

2)−KΦ(− logK + β − 1
2).

This completes the problem.
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Exercise 5.2 Let (Ω,F ,F, P ) be a filtered probability space, and T ∈ N. Let
Y = (Yk)k=0,1,...,T , be an integrable, F-adapted process, and define the F-adapted
process U = (Ut)k=0,1,...,T by

UT = YT

Uk = max
(
Yk, E [Uk+1 |Fk]

)
for k = 0, 1, . . . , T − 1.

The process U is called the Snell envelope of Y . For simplicity, we suppose that F0
in F = (Fk)k=0,1,...,T is the trivial σ-algebra {∅,Ω}.

(a) Show that the Snell envelope U of Y is the smallest supermartingale dominating
Y , in the sense that if V = (Vk)k=0,1,...,T is a supermartingale with Vk ≥ Yk
P -a.s. for all k = 0, 1, . . . , T , then we have Vk ≥ Uk P -a.s. for all k = 0, 1, . . . , T
as well.
Hint: Proceed by backward induction.

(b) Show that if Y is a supermartingale, then Uk = Yk P -a.s. for all k = 0, 1, . . . , T ,
and if Y is a submartingale, then Uk = E [YT |Fk] P -a.s. for all k = 0, 1, . . . , T .
Hint: Proceed by backward induction.

(c) Using your result from (b), show that if Y is a submartingale, then U is a
martingale.

(d) Let τ be an F-stopping time. Show that the stopped process U τ = (Uk∧τ )k=0,1,...,T
is a supermartingale.

Let us now define

τ ∗ := inf
{
k ∈ {0, 1, . . . , T} : Uk = Yk

}
.

(e) Show that τ ∗ is an F-stopping time. Furthermore, show that the stopped
process U τ∗ is a martingale and, in particular, that U0 = E [Yτ∗ ].

Solution 5.2

(a) Adaptedness of U is immediate since the maximum of a two measurable
functions is again a measurable function. Integrability follows by backward
induction:

• YT ∈ L1(P ) by assumption.

• Suppose now that Un ∈ L1(P ) for some n ∈ {1, . . . , T}; we want to show
that this implies Un−1 ∈ L1(P ). We have

E [|Un−1|] = E
[
|max

(
Yn−1, E [Un |Fn−1]

)
|
]

≤ E
[
max

(
|Yn−1|, |E [Un |Fn−1] |

)]
≤ E

[
max

(
|Yn−1|, E [|Un| |Fn−1]

)]
≤ E [|Yn−1|] + E [|Un|] <∞,
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where the second inequality uses Jensen’s inequality for conditional ex-
pectations.

Moreover, by the definition of the process U , UT = YT and Uk ≥ E [Uk+1 |Fk]
for k = 0, 1, . . . , T − 1, so that the Snell envelope U of the process Y is a
supermartingale, and Uk ≥ Yk for all k = 0, 1, . . . , T by construction. It remains
to show that U is the smallest such process. Let V = (Vk)k=0,1,...,T be any other
supermartingale dominating Y . We have to show that V dominates U as well.
We again proceed by backward induction:

• First, since UT = YT and V dominates Y , we have that VT ≥ UT .

• Suppose now that Vn ≥ Un for some n ∈ {1, . . . , T}; we want to show
that this implies Vn−1 ≥ Un−1. We have

Vn−1 ≥ E [Vn |Fn−1] ≥ E [Un |Fn−1] ,

where the first inequality uses the supermartingale property of V and the
second one uses the induction hypothesis. Furthermore, since V dominates
Y , we also have that Vn−1 ≥ Yn−1. Combining the two results, we get

Vn−1 ≥ max
(
Yn−1, E [Un |Fn−1]

)
= Un−1

as desired.

(b) We proceed by backward induction in both cases. Let us first assume that Y
is a supermartingale:

• By the definition of U , we have that UT = YT .

• Suppose now that Un = Yn for some n ∈ {1, . . . , T}; we want to show
that this implies Un−1 = Yn−1. We have

Un−1 = max
(
Yn−1, E [Un |Fn−1]

)
= max

(
Yn−1, E [Yn |Fn−1]

)
= Yn−1.

The last equality follows since E [Yn |Fn−1] ≤ Yn−1 by the assumption
that Y is a supermartingale.

Let Y be a submartingale:

• Since Y is F-adapted, we have that UT = YT = E [YT |FT ].

• Suppose now that Un = E [YT |Fn] for some n ∈ {1, . . . , T}; we want to
show that this implies Un−1 = E [YT |Fn−1]. We have

Un−1 = max
(
Yn−1, E [Un |Fn−1]

)
= max

(
Yn−1, E [E [YT |Fn] |Fn−1]

)
= max

(
Yn−1, E [YT |Fn−1]

)
= E [YT |Fn−1] .

The third equality uses the tower property of conditional expectations
and the last one that E [YT |Fn−1] ≥ Yn−1 by the assumption that Y is a
submartingale.
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(c) Since we know that U is a supermartingale, it is integrable and F-adapted.
Furthermore, we know from (b) that Uk = E [YT |Fk] for all k = 0, 1, . . . , T .
Therefore, we have for all k = 0, 1, . . . , T − 1 that

E [Uk+1 |Fk] = E [E [YT |Fk+1] |Fk] = E [YT |Fk] = Uk,

where the second equality uses the tower property of conditional expectations.
This is the martingale property of U , so U is in fact a martingale.

(d) Note that we have for all k ∈ {0, 1, . . . , T − 1} that
U(k+1)∧τ − Uk∧τ = 1{k+1≤τ}(Uk+1 − Uk). (1)

The supermartingale property of U τ now immediately follows from the super-
martingale property of U :

E
[
U(k+1)∧τ−Uk∧τ

∣∣∣Fk] = E
[
1{k+1≤τ}(Uk+1−Uk)

∣∣∣Fk]
= 1{k+1≤τ}E [Uk+1−Uk |Fk] ≤ 0,

where the third equality uses that 1{k+1≤τ} = 1 − 1{τ≤k} is Fk-measurable
and the last inequality holds by our assumption that U is a supermartingale.
Adaptedness and integrability of a general stopped process follow from its
stochastic integral representation analogous to the solution of Exercise 3.1 (c).

(e) First note that since UT = YT by construction, τ ∗ ≤ T . For k = 0, 1, . . . , T ,
the set

{τ ∗ ≤ k}c = {τ ∗ > k} = {Y0 < U0, . . . , Yk < Uk}
= {Y0 − U0 < 0, . . . , Yk − Uk < 0}

is in Fk since both U and Y are F-adapted processes and the difference of two
real-valued Fk-measurable random variables is a real-valued Fk-measurable
random variable. Hence, {τ ∗ ≤ k} ∈ Fk for k = 0, 1, . . . , T and τ ∗ is an
F-stopping time.

Now we show that U τ∗ is a not only a supermartingale, but actually a true
martingale. Note that Uk1{k+1≤τ∗} = E [Uk+1 |Fk]1{k+1≤τ∗} by the definition
of Snell envelope and the definition of the stopping time τ ∗: If k < τ ∗ ⇐⇒
k + 1 ≤ τ ∗, then we must have Uk 6= Yk which implies Uk > Yk and thus giving
Uk = E [Uk+1 |Fk]. Hence, using (1), we have

U(k+1)∧τ∗ − Uk∧τ∗ = 1{k+1≤τ∗}(Uk+1 − Uk) = 1{k+1≤τ∗}
(
Uk+1 − E [Uk+1 |Fk]

)
.

This then implies that
E
[
U(k+1)∧τ∗ − Uk∧τ∗

∣∣∣Fk] = 1{k+1≤τ∗}E [Uk+1 − E [Uk+1 |Fk] |Fk] = 0,

which is the martingale property of U τ∗ . In particular, we have E [UT∧τ∗ ] = U0
by Corollary I.3.2 in the lecture notes. Moreover, since τ ∗ ≤ T , we have

E [Yτ∗ ] = E [YT∧τ∗ ] = E [UT∧τ∗ ] = E [Uτ∗ ] = U0.
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