Mathematical Foundations for Finance Exercise Sheet 5

Exercise 5.1 Let (Ω, \mathcal{F}, P) be a probability space and Y a random variable normally distributed such that $Y \sim \mathcal{N}(0, 1)$.

(a) Fix a constant $\beta \in (0, \frac{1}{2})$, and consider the random variable

$$Z := \exp\left(-(\frac{1}{2} - \beta)Y - \frac{(\frac{1}{2} - \beta)^2}{2}\right)$$

Define the map $Q : \mathcal{F} \to \mathbb{R}$ by $Q[A] := E[Z\mathbb{1}_A]$. Prove that Q is a probability measure on (Ω, \mathcal{F}) , and that it is equivalent to P.

(b) Set

$$S_0^1 := e^\beta$$
 and $S_1^1 := e^Y$.

Prove that Q is an equivalent martingale measure for $S^1 = (S_0^1, S_1^1)$, with respect to the filtration $\mathbb{F} = (\mathcal{F}_0, \mathcal{F}_1)$ given by $\mathcal{F}_0 := \{\emptyset, \Omega\}$ and $\mathcal{F}_1 := \mathcal{F}$.

Hint: The statement $Q[A] = E[Z\mathbb{1}_A]$ for all $A \in \mathcal{F}$ is equivalent to the statement $E_Q[U] = E[ZU]$ for all nonnegative random variables U.

(c) Now consider the market (S^0, S^1) , where $S^0 \equiv 1$ represents a bank account and S^1 is as in part (b). Fix some K > 0 and define the function $C : \mathbb{R} \to \mathbb{R}$ by

$$C(x) = (x - K)^{+} := \max\{x - K, 0\}.$$

Compute $V_0^C := E_Q[C(S_1^1)]$ in terms of the cumulative distribution function of a standard normal random variable.

Solution 5.1

- (a) In order for Q to be a probability measure, we need to verify that
 - $Q[A] \in [0,1]$ for all $A \in \mathcal{F}$;
 - $Q[\varnothing] = 0;$
 - $Q[\bigcup_{n=1}^{\infty} A_n] = \sum_{n=1}^{\infty} Q[A_n]$ for any disjoint family of sets $(A_n)_{n \in \mathbb{N}}$.

First, note that since Y is a standard normal random variable, Z is integrable (and nonnegative), and thus Q is a well-defined function with values in $[0, \infty)$.

Moreover,

$$Q[\Omega] = E[Z\mathbb{1}_{\Omega}] = E[Z] = \exp\left(-\frac{(\frac{1}{2} - \beta)^2}{2}\right) E\left[\exp\left(-(\frac{1}{2} - \beta)Y\right)\right] = 1,$$

since the moment-generating function of a standard normal random variable is $\phi(t) = E[e^{tY}] = \exp(\frac{t^2}{2})$. Also, we have $Q[\varnothing] = E[Z\mathbb{1}_{\varnothing}] = E[0] = 0$. Next, if $A_1, A_2, \ldots \in \mathcal{F}$ are disjoint, then $\mathbb{1}_{\bigcup_{n=1}^{\infty} A_n} = \sum_{n=1}^{\infty} \mathbb{1}_{A_n}$, and so

$$Q\left[\bigcup_{n=1}^{\infty} A_n\right] = E\left[Z\mathbb{1}_{\bigcup_{n=1}^{\infty} A_n}\right] = E\left[\sum_{n=1}^{\infty} Z\mathbb{1}_{A_n}\right]$$

Since Z is nonnegative, then $0 \leq \sum_{n=1}^{N} Z \mathbb{1}_{A_n} \uparrow \sum_{n=1}^{\infty} Z \mathbb{1}_{A_n}$ as $N \to \infty$, and thus the monotone convergence theorem implies that

$$E\left[\sum_{n=1}^{\infty} Z\mathbb{1}_{A_n}\right] = \lim_{N \to \infty} E\left[\sum_{n=1}^{N} Z\mathbb{1}_{A_n}\right] = \lim_{N \to \infty} \sum_{n=1}^{N} E[Z\mathbb{1}_{A_n}] = \sum_{n=1}^{\infty} E[Z\mathbb{1}_{A_n}].$$

Hence, we have

$$Q\left[\bigcup_{n=1}^{\infty} A_n\right] = \sum_{n=1}^{\infty} Q[A_n].$$

We can conclude that Q is a probability measure on (Ω, \mathcal{F}) .

It remains to show that $Q \approx P$. To this end, let $A \in \mathcal{F}$ with P[A] = 0. Then $Z\mathbb{1}_A = 0$ *P*-a.s, and thus

$$Q[A] = E[Z1_A] = E[0] = 0.$$

Hence, $Q \ll P$. Conversely, suppose that $A \in \mathcal{F}$ with Q[A] = 0. This means that $E[Z\mathbb{1}_A] = 0$. Since $Z\mathbb{1}_A$ is nonnegative, then $Z\mathbb{1}_A = 0$ *P*-a.s. Also, since Z > 0, then $Z\mathbb{1}_A = 0$ exactly when $\mathbb{1}_A = 0$, and so $\mathbb{1}_A = 0$ *P*-a.s, i.e. P[A] = 0. It follows that $P \ll Q$, and hence $Q \approx P$, as required.

(b) Since $Q \approx P$ by part (a), it remains to show that S^1 is a Q-martingale. It is immediate that S^1 is \mathbb{F} -adapted. Also, since $S_1^1 \ge 0$, we have $E[|S_1^1|] = E[S_1^1]$, and by the hint,

$$E_Q[S_1^1] = E[ZS_1^1] = E\left[\exp\left((\frac{1}{2} + \beta)Y - \frac{(\frac{1}{2} - \beta)^2}{2}\right)\right]$$

= $\exp\left(-\frac{(\frac{1}{2} - \beta)^2}{2}\right) E\left[\exp\left((\frac{1}{2} + \beta)Y\right)\right] = \exp\left(\frac{(\frac{1}{2} + \beta)^2 - (\frac{1}{2} - \beta)^2}{2}\right)$
= $e^\beta < \infty$,

using again that $E[e^{tY}] = \exp(\frac{t^2}{2})$. Thus, S^1 is *Q*-integrable. Finally, we note that since \mathcal{F}_0 is the trivial σ -field, then by Exercise 1.3(c),

$$E_Q[S_1^1 \mid \mathcal{F}_0] = E_Q[S_1^1] = e^\beta = S_0^1.$$

This completes the proof.

Updated: November 20, 2023

(c) We have that

$$V_0^C = E_Q[C(S_1^1)] = E_Q[(S_1^1 - K)^+] = E[Z(S_1^1 - K)^+]$$

= $\exp\left(-\frac{(\frac{1}{2} - \beta)^2}{2}\right) E\left[\exp\left(-(\frac{1}{2} - \beta)Y\right)(e^Y - K)\mathbb{1}_{\{e^Y > K\}}\right].$

Since the distribution of Y has density $f_Y(y) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{y^2}{2})$, and also since $\{e^Y > K\} = \{Y > \log K\}$, we can write

$$E\left[\exp\left(-(\frac{1}{2}-\beta)Y\right)(e^{Y}-K)\mathbb{1}_{\{e^{Y}>K\}}\right] = \frac{1}{\sqrt{2\pi}}\int_{\log K}^{\infty} e^{-(\frac{1}{2}-\beta)y}(e^{y}-K)e^{-\frac{y^{2}}{2}}\,\mathrm{d}y.$$

The integrand can be rewritten as

$$e^{-(\frac{1}{2}-\beta)y}(e^{y}-K)e^{-\frac{y^{2}}{2}} = e^{(\frac{1}{2}+\beta)y-\frac{y^{2}}{2}} - Ke^{-(\frac{1}{2}-\beta)y-\frac{y^{2}}{2}}$$
$$= e^{-\frac{(y-(\beta+\frac{1}{2}))^{2}}{2}}e^{\frac{(\beta+\frac{1}{2})^{2}}{2}} - Ke^{-\frac{(y-(\beta-\frac{1}{2}))^{2}}{2}}e^{\frac{(\beta-\frac{1}{2})^{2}}{2}},$$

and so

$$\begin{split} \frac{1}{\sqrt{2\pi}} \int_{\log K}^{\infty} e^{-(\frac{1}{2}-\beta)y} (e^{y}-K) e^{-\frac{y^{2}}{2}} \, \mathrm{d}y &= e^{\frac{(\beta+\frac{1}{2})^{2}}{2}} \int_{\log K}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-(\beta+\frac{1}{2}))^{2}}{2}} \, \mathrm{d}y \\ &- K e^{\frac{(\beta-\frac{1}{2})^{2}}{2}} \int_{\log K}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-(\beta-\frac{1}{2}))^{2}}{2}} \, \mathrm{d}y \\ &= e^{\frac{(\beta+\frac{1}{2})^{2}}{2}} P[Y+\beta+\frac{1}{2}>\log K] \\ &- K e^{\frac{(\beta-\frac{1}{2})^{2}}{2}} P[Y+\beta-\frac{1}{2}>\log K], \end{split}$$

since the above two integrands are the densities of the random variables $Y + \beta + \frac{1}{2}$ and $Y + \beta - \frac{1}{2}$, respectively. Letting $\Phi(x) := P[Y \leq x]$ denote the cumulative distribution function of a standard normal random variable, we can rewrite the above as

$$\frac{1}{\sqrt{2\pi}} \int_{\log K}^{\infty} e^{-(\frac{1}{2} - \beta)y} (e^y - K) e^{-\frac{y^2}{2}} \, \mathrm{d}y = e^{\frac{(\beta + \frac{1}{2})^2}{2}} \Phi(-\log K + \beta + \frac{1}{2}) \\ - e^{\frac{(\beta - \frac{1}{2})^2}{2}} K \Phi(-\log K + \beta - \frac{1}{2}).$$

Remembering that V_0^C is the product of $\exp(-\frac{(\frac{1}{2}-r)^2}{2})$ and the above difference, we get

$$V_0^C = e^{\frac{-(\frac{1}{2}-\beta)^2 + (\beta+\frac{1}{2})^2}{2}} \Phi(-\log K + \beta + \frac{1}{2}) - K\Phi(-\log K + \beta - \frac{1}{2})$$

= $e^{\beta}\Phi(-\log K + \beta + \frac{1}{2}) - K\Phi(-\log K + \beta - \frac{1}{2}).$

This completes the problem.

Updated: November 20, 2023

Exercise 5.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space, and $T \in \mathbb{N}$. Let $Y = (Y_k)_{k=0,1,\ldots,T}$, be an integrable, \mathbb{F} -adapted process, and define the \mathbb{F} -adapted process $U = (U_t)_{k=0,1,\ldots,T}$ by

$$U_T = Y_T$$

$$U_k = \max\left(Y_k, E\left[U_{k+1} \mid \mathcal{F}_k\right]\right) \quad \text{for } k = 0, 1, \dots, T-1.$$

The process U is called the Snell envelope of Y. For simplicity, we suppose that \mathcal{F}_0 in $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,\dots,T}$ is the trivial σ -algebra $\{\emptyset, \Omega\}$.

(a) Show that the Snell envelope U of Y is the smallest supermartingale dominating Y, in the sense that if $V = (V_k)_{k=0,1,\dots,T}$ is a supermartingale with $V_k \ge Y_k$ P-a.s. for all $k = 0, 1, \dots, T$, then we have $V_k \ge U_k$ P-a.s. for all $k = 0, 1, \dots, T$ as well.

Hint: Proceed by backward induction.

- (b) Show that if Y is a supermartingale, then $U_k = Y_k P$ -a.s. for all k = 0, 1, ..., T, and if Y is a submartingale, then $U_k = E[Y_T | \mathcal{F}_k] P$ -a.s. for all k = 0, 1, ..., T. Hint: Proceed by backward induction.
- (c) Using your result from (b), show that if Y is a submartingale, then U is a martingale.
- (d) Let τ be an \mathbb{F} -stopping time. Show that the stopped process $U^{\tau} = (U_{k \wedge \tau})_{k=0,1,\dots,T}$ is a supermartingale.

Let us now define

$$\tau^* := \inf \{ k \in \{0, 1, \dots, T\} : U_k = Y_k \}.$$

(e) Show that τ^* is an \mathbb{F} -stopping time. Furthermore, show that the stopped process U^{τ^*} is a martingale and, in particular, that $U_0 = E[Y_{\tau^*}]$.

Solution 5.2

- (a) Adaptedness of U is immediate since the maximum of a two measurable functions is again a measurable function. Integrability follows by backward induction:
 - $Y_T \in L^1(P)$ by assumption.
 - Suppose now that $U_n \in L^1(P)$ for some $n \in \{1, \ldots, T\}$; we want to show that this implies $U_{n-1} \in L^1(P)$. We have

$$E[|U_{n-1}|] = E\left[|\max\left(Y_{n-1}, E[U_n | \mathcal{F}_{n-1}]\right)|\right] \\\leq E\left[\max\left(|Y_{n-1}|, |E[U_n | \mathcal{F}_{n-1}]|\right)\right] \\\leq E\left[\max\left(|Y_{n-1}|, E[|U_n| | \mathcal{F}_{n-1}]\right)\right] \leq E[|Y_{n-1}|] + E[|U_n|] < \infty,$$

Updated: November 20, 2023

where the second inequality uses Jensen's inequality for conditional expectations.

Moreover, by the definition of the process U, $U_T = Y_T$ and $U_k \ge E[U_{k+1} | \mathcal{F}_k]$ for $k = 0, 1, \ldots, T - 1$, so that the Snell envelope U of the process Y is a supermartingale, and $U_k \ge Y_k$ for all $k = 0, 1, \ldots, T$ by construction. It remains to show that U is the smallest such process. Let $V = (V_k)_{k=0,1,\ldots,T}$ be any other supermartingale dominating Y. We have to show that V dominates U as well. We again proceed by backward induction:

- First, since $U_T = Y_T$ and V dominates Y, we have that $V_T \ge U_T$.
- Suppose now that $V_n \ge U_n$ for some $n \in \{1, \ldots, T\}$; we want to show that this implies $V_{n-1} \ge U_{n-1}$. We have

$$V_{n-1} \ge E\left[V_n \,|\, \mathcal{F}_{n-1}\right] \ge E\left[U_n \,|\, \mathcal{F}_{n-1}\right],$$

where the first inequality uses the supermartingale property of V and the second one uses the induction hypothesis. Furthermore, since V dominates Y, we also have that $V_{n-1} \ge Y_{n-1}$. Combining the two results, we get

$$V_{n-1} \ge \max \left(Y_{n-1}, E\left[U_n \,|\, \mathcal{F}_{n-1} \right] \right) = U_{n-1}$$

as desired.

- (b) We proceed by backward induction in both cases. Let us first assume that Y is a supermartingale:
 - By the definition of U, we have that $U_T = Y_T$.
 - Suppose now that $U_n = Y_n$ for some $n \in \{1, \ldots, T\}$; we want to show that this implies $U_{n-1} = Y_{n-1}$. We have

$$U_{n-1} = \max\left(Y_{n-1}, E\left[U_n \,|\, \mathcal{F}_{n-1}\right]\right) = \max\left(Y_{n-1}, E\left[Y_n \,|\, \mathcal{F}_{n-1}\right]\right) = Y_{n-1}.$$

The last equality follows since $E[Y_n | \mathcal{F}_{n-1}] \leq Y_{n-1}$ by the assumption that Y is a supermartingale.

Let Y be a submartingale:

- Since Y is \mathbb{F} -adapted, we have that $U_T = Y_T = E[Y_T | \mathcal{F}_T]$.
- Suppose now that $U_n = E[Y_T | \mathcal{F}_n]$ for some $n \in \{1, \ldots, T\}$; we want to show that this implies $U_{n-1} = E[Y_T | \mathcal{F}_{n-1}]$. We have

$$U_{n-1} = \max \left(Y_{n-1}, E[U_n | \mathcal{F}_{n-1}] \right) = \max \left(Y_{n-1}, E[E[Y_T | \mathcal{F}_n] | \mathcal{F}_{n-1}] \right)$$

= max $\left(Y_{n-1}, E[Y_T | \mathcal{F}_{n-1}] \right) = E[Y_T | \mathcal{F}_{n-1}].$

The third equality uses the tower property of conditional expectations and the last one that $E[Y_T | \mathcal{F}_{n-1}] \ge Y_{n-1}$ by the assumption that Y is a submartingale.

Updated: November 20, 2023

(c) Since we know that U is a supermartingale, it is integrable and \mathbb{F} -adapted. Furthermore, we know from (b) that $U_k = E[Y_T | \mathcal{F}_k]$ for all $k = 0, 1, \ldots, T$. Therefore, we have for all $k = 0, 1, \ldots, T - 1$ that

$$E[U_{k+1} | \mathcal{F}_k] = E[E[Y_T | \mathcal{F}_{k+1}] | \mathcal{F}_k] = E[Y_T | \mathcal{F}_k] = U_k,$$

where the second equality uses the tower property of conditional expectations. This is the martingale property of U, so U is in fact a martingale.

(d) Note that we have for all $k \in \{0, 1, \dots, T-1\}$ that

$$U_{(k+1)\wedge\tau} - U_{k\wedge\tau} = \mathbb{1}_{\{k+1\leq\tau\}} (U_{k+1} - U_k).$$
(1)

The supermartingale property of U^{τ} now immediately follows from the supermartingale property of U:

$$E\left[U_{(k+1)\wedge\tau} - U_{k\wedge\tau} \middle| \mathcal{F}_k\right] = E\left[\mathbb{1}_{\{k+1\leq\tau\}} (U_{k+1} - U_k) \middle| \mathcal{F}_k\right]$$
$$= \mathbb{1}_{\{k+1\leq\tau\}} E\left[U_{k+1} - U_k \middle| \mathcal{F}_k\right] \le 0,$$

where the third equality uses that $\mathbb{1}_{\{k+1\leq\tau\}} = 1 - \mathbb{1}_{\{\tau\leq k\}}$ is \mathcal{F}_k -measurable and the last inequality holds by our assumption that U is a supermartingale. Adaptedness and integrability of a general stopped process follow from its stochastic integral representation analogous to the solution of Exercise 3.1 (c).

(e) First note that since $U_T = Y_T$ by construction, $\tau^* \leq T$. For k = 0, 1, ..., T, the set

$$\{\tau^* \le k\}^c = \{\tau^* > k\} = \{Y_0 < U_0, \dots, Y_k < U_k\}$$
$$= \{Y_0 - U_0 < 0, \dots, Y_k - U_k < 0\}$$

is in \mathcal{F}_k since both U and Y are \mathbb{F} -adapted processes and the difference of two real-valued \mathcal{F}_k -measurable random variables is a real-valued \mathcal{F}_k -measurable random variable. Hence, $\{\tau^* \leq k\} \in \mathcal{F}_k$ for $k = 0, 1, \ldots, T$ and τ^* is an \mathbb{F} -stopping time.

Now we show that U^{τ^*} is a not only a supermartingale, but actually a true martingale. Note that $U_k \mathbb{1}_{\{k+1 \leq \tau^*\}} = E[U_{k+1} | \mathcal{F}_k] \mathbb{1}_{\{k+1 \leq \tau^*\}}$ by the definition of Snell envelope and the definition of the stopping time τ^* : If $k < \tau^* \iff k+1 \leq \tau^*$, then we must have $U_k \neq Y_k$ which implies $U_k > Y_k$ and thus giving $U_k = E[U_{k+1} | \mathcal{F}_k]$. Hence, using (1), we have

$$U_{(k+1)\wedge\tau^*} - U_{k\wedge\tau^*} = \mathbb{1}_{\{k+1\leq\tau^*\}} (U_{k+1} - U_k) = \mathbb{1}_{\{k+1\leq\tau^*\}} (U_{k+1} - E[U_{k+1} | \mathcal{F}_k]).$$

This then implies that

$$E\left[U_{(k+1)\wedge\tau^*} - U_{k\wedge\tau^*} \,\middle|\, \mathcal{F}_k\right] = \mathbb{1}_{\{k+1\leq\tau^*\}} E\left[U_{k+1} - E\left[U_{k+1} \,\middle|\, \mathcal{F}_k\right] \,\middle|\, \mathcal{F}_k\right] = 0,$$

which is the martingale property of U^{τ^*} . In particular, we have $E[U_{T \wedge \tau^*}] = U_0$ by Corollary I.3.2 in the lecture notes. Moreover, since $\tau^* \leq T$, we have

$$E[Y_{\tau^*}] = E[Y_{T \wedge \tau^*}] = E[U_{T \wedge \tau^*}] = E[U_{\tau^*}] = U_0.$$

Updated: November 20, 2023