Mathematical Foundations for Finance Exercise Sheet 5

Please hand in your solutions by 12:00 on Wednesday, November 1 via the course homepage.

Exercise 5.1 Let (Ω, \mathcal{F}, P) be a probability space and Y a random variable normally distributed such that $Y \sim \mathcal{N}(0, 1)$.

(a) Fix a constant $\beta \in (0, \frac{1}{2})$, and consider the random variable

$$Z := \exp\left(-(\frac{1}{2} - \beta)Y - \frac{(\frac{1}{2} - \beta)^2}{2}\right)$$

Define the map $Q : \mathcal{F} \to \mathbb{R}$ by $Q[A] := E[Z\mathbb{1}_A]$. Prove that Q is a probability measure on (Ω, \mathcal{F}) , and that it is equivalent to P.

(b) Set

$$S_0^1 := e^\beta \qquad \text{and} \qquad S_1^1 := e^Y.$$

Prove that Q is an equivalent martingale measure for $S^1 = (S_0^1, S_1^1)$, with respect to the filtration $\mathbb{F} = (\mathcal{F}_0, \mathcal{F}_1)$ given by $\mathcal{F}_0 := \{\emptyset, \Omega\}$ and $\mathcal{F}_1 := \mathcal{F}$.

Hint: The statement $Q[A] = E[Z\mathbb{1}_A]$ for all $A \in \mathcal{F}$ is equivalent to the statement $E_Q[U] = E[ZU]$ for all nonnegative random variables U.

(c) Now consider the market (S^0, S^1) , where $S^0 \equiv 1$ represents a bank account and S^1 is as in part (b). Fix some K > 0 and define the function $C : \mathbb{R} \to \mathbb{R}$ by

$$C(x) = (x - K)^{+} := \max\{x - K, 0\}.$$

Compute $V_0^C := E_Q[C(S_1^1)]$ in terms of the cumulative distribution function of a standard normal random variable.

Exercise 5.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space, and $T \in \mathbb{N}$. Let $Y = (Y_k)_{k=0,1,\ldots,T}$, be an integrable, \mathbb{F} -adapted process, and define the \mathbb{F} -adapted process $U = (U_t)_{k=0,1,\ldots,T}$ by

$$U_T = Y_T U_k = \max(Y_k, E[U_{k+1} | \mathcal{F}_k]) \text{ for } k = 0, 1, \dots, T-1.$$

The process U is called the Snell envelope of Y. For simplicity, we suppose that \mathcal{F}_0 in $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,\dots,T}$ is the trivial σ -algebra $\{\emptyset, \Omega\}$.

Updated: October 20, 2023

1/2

(a) Show that the Snell envelope U of Y is the smallest supermartingale dominating Y, in the sense that if $V = (V_k)_{k=0,1,\dots,T}$ is a supermartingale with $V_k \ge Y_k$ *P*-a.s. for all $k = 0, 1, \dots, T$, then we have $V_k \ge U_k$ *P*-a.s. for all $k = 0, 1, \dots, T$ as well.

Hint: Proceed by backward induction.

- (b) Show that if Y is a supermartingale, then $U_k = Y_k$ P-a.s. for all k = 0, 1, ..., T, and if Y is a submartingale, then $U_k = E[Y_T | \mathcal{F}_k]$ P-a.s. for all k = 0, 1, ..., T. Hint: Proceed by backward induction.
- (c) Using your result from (b), show that if Y is a submartingale, then U is a martingale.
- (d) Let τ be an \mathbb{F} -stopping time. Show that the stopped process $U^{\tau} = (U_{k \wedge \tau})_{k=0,1,\dots,T}$ is a supermartingale.

Let us now define

$$\tau^* := \inf \left\{ k \in \{0, 1, \dots, T\} : U_k = Y_k \right\}.$$

(e) Show that τ^* is an \mathbb{F} -stopping time. Furthermore, show that the stopped process U^{τ^*} is a martingale and, in particular, that $U_0 = E[Y_{\tau^*}]$.