Mathematical Foundations for Finance Exercise Sheet 6

Exercise 6.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k \in \mathbb{N}_{0}}$. Let $X=\left(X_{k}\right)_{k \in \mathbb{N}_{0}}$ be an adapted and integrable process.
(a) Find the Doob decomposition of X. In other words, prove that there exist a martingale $M=\left(M_{k}\right)_{k \in \mathbb{N}_{0}}$ and an integrable and predictable process $A=$ $\left(A_{k}\right)_{k \in \mathbb{N}_{0}}$ that are both null at zero, and such that

$$
X=X_{0}+M+A P \text {-a.s. }
$$

Hint: You may define $M_{k}:=\sum_{j=1}^{k}\left(X_{j}-E\left[X_{j} \mid \mathcal{F}_{j-1}\right]\right)$, for $k \in \mathbb{N}$.
(b) Prove that M and A are unique up to P-a.s. equality.

Solution 6.1 To simplify notation, we omit " P-a.s." from all equalities below.
(a) For each $k \in \mathbb{N}_{0}$, take

$$
M_{k}:=\sum_{j=1}^{k}\left(X_{j}-E\left[X_{j} \mid \mathcal{F}_{j-1}\right]\right) .
$$

It is immediate that M is adapted, integrable, and null at zero. Then, for $k \in \mathbb{N}$, we have

$$
\begin{aligned}
E\left[M_{k}-M_{k-1} \mid \mathcal{F}_{k-1}\right] & \left.=E\left[X_{k}-E\left[X_{k} \mid \mathcal{F}_{k-1}\right] \mid \mathcal{F}_{k-1}\right]\right] \\
& =E\left[X_{k} \mid \mathcal{F}_{k-1}\right]-E\left[X_{k} \mid \mathcal{F}_{k-1}\right] \\
& =0 .
\end{aligned}
$$

Hence, M is a martingale. Next, for each $k \in \mathbb{N}_{0}$, we set

$$
\begin{aligned}
A_{k} & :=X_{k}-X_{0}-M_{k}=X_{k}-X_{0}-\sum_{j=1}^{k}\left(X_{j}-E\left[X_{j} \mid \mathcal{F}_{j-1}\right]\right) \\
& =\sum_{j=1}^{k}\left(E\left[X_{j} \mid \mathcal{F}_{j-1}\right]-X_{j-1}\right) .
\end{aligned}
$$

Then A is predictable with $A_{0}=0$, and of course $X=X_{0}+M+A$, as required.
(b) Suppose the processes $M^{(1)}, A^{(1)}$ and $M^{(2)}, A^{(2)}$ both satisfy the conditions of the problem. Subtracting the equalities

$$
\begin{aligned}
& X-X_{0}=M^{(1)}+A^{(1)} \\
& X-X_{0}=M^{(2)}+A^{(2)}
\end{aligned}
$$

gives

$$
M^{(1)}-M^{(2)}=A^{(2)}-A^{(1)} .
$$

For notational convenience, we set $Y:=M^{(1)}-M^{(2)}=A^{(2)}-A^{(1)}$. Since $Y=A^{(2)}-A^{(1)}$, then Y is predictable, and hence for all $k \in \mathbb{N}$,

$$
Y_{k}=E\left[Y_{k} \mid \mathcal{F}_{k-1}\right] .
$$

But since the difference of two martingales is a martingale, Y is a martingale, and hence the above can be rewritten as

$$
Y_{k}=Y_{k-1} \forall k \in \mathbb{N}
$$

Since $Y_{0}=0$, this implies that $Y_{k}=0$ for all $k \in \mathbb{N}_{0}$, and hence

$$
M^{(1)}=M^{(2)} \text { and } A^{(1)}=A^{(2)} .
$$

This completes the proof.

Exercise 6.2 Let $W=\left(W_{t}\right)_{t \geq 0}$ and $W^{\prime}=\left(W_{t}^{\prime}\right)_{t \geq 0}$ be two independent Brownian motions (BM) defined on some probability space (Ω, \mathcal{F}, P). Show that
(a) $W^{1}:=-W$ is a BM.
(b) $W_{t}^{2}:=W_{T+t}-W_{T}$, for $t \geq 0$, is a BM for any $T \in(0, \infty)$.
(c) $W^{3}:=\alpha W+\sqrt{1-\alpha^{2}} W^{\prime}$ is a BM for any $\alpha \in[0,1]$.
(d) Show that the independence of W and W^{\prime} in (c) cannot be omitted, i.e., if W and W^{\prime} are not independent, then W^{3} need not be a BM. Give two examples.

Solution 6.2 We first recall the definition of a Brownian motion in order to know what needs to be checked. A Brownian motion with respect to P is a real-valued stochastic process $W=\left(W_{t}\right)_{t \geq 0}$ such that
(BM0) $W_{0}=0 P$-a.s.
(BM1) For any $n \in \mathbb{N}$ and any times $0=t_{0}<t_{1}<\cdots<t_{n}<\infty$, the increments $W_{t_{i}}-W_{t_{i-1}}$ are independent and normally distributed with variance $t_{i}-t_{i-1}$ under P, i.e.

$$
W_{t_{i}}-W_{t_{i-1}} \sim \mathcal{N}\left(0, t_{i}-t_{i-1}\right) \text { for } i=1, \ldots, n
$$

Updated: October 30, 2023
(BM2) W has P-a.s. continuous trajectories.
(a) We check (BM0), (BM1) and (BM2) separately.
(BM0) This is clear since $W_{0}^{1}=-W_{0}=0 P$-a.s.
(BM1) Let $n \in \mathbb{N}$ and $0=t_{0}<t_{1}<\cdots<t_{n}<\infty$. Then we have, for $i=1, \ldots, n$, that

$$
W_{t_{i}}^{1}-W_{t_{i-1}}^{1}=-\left(W_{t_{i}}-W_{t_{i-1}}\right)
$$

which are independent under P. Since $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ if and only if $-X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, we also conclude that $W_{t_{i}}^{1}-W_{t_{i-1}}^{1} \sim \mathcal{N}\left(0, t_{i}-t_{i-1}\right)$.
(BM2) This is trivial, since $W^{1}=-W$. The sign does not alter continuity.
(b) We check (BM0), (BM1) and (BM2) separately.
(BM0) We obviously have $W_{0}^{2}=W_{T}-W_{T}=0 P$-a.s.
(BM1') Let $n \in \mathbb{N}$ and $0=t_{0}<t_{1}<\cdots<t_{n}<\infty$. Then we have for $i=1, \ldots, n$ that

$$
W_{t_{i}}^{2}-W_{t_{i-1}}^{2}=W_{T+t_{i}}-W_{T}-\left(W_{T+t_{i-1}}-W_{T}\right)=W_{T+t_{i}}-W_{T+t_{i-1}}
$$

Denoting $t_{i}^{\prime}=T+t_{i}$, we see from the definition ($\mathrm{BM1}^{\prime}$) that the increments of W^{2} are independent under P, and since $t_{i}^{\prime}-t_{i-1}^{\prime}=t_{i}-t_{i-1}$, we also conclude that for all $i=1, \ldots, n$, we have

$$
W_{t_{i}}^{2}-W_{t_{i-1}}^{2} \sim \mathcal{N}\left(0, t_{i}-t_{i-1}\right) .
$$

(BM2) This is again easy, since W^{2} is simply W shifted in time by T minus a random variable which does not depend on t.
(c) We check (BM0), (BM1) and (BM2) separately.
(BM0) $W_{0}^{3}=\alpha W_{0}+\sqrt{1-\alpha^{2}} W_{0}^{\prime}=0 P$-a.s., since both W_{0} and W_{0}^{\prime} are equal to $0 P$-a.s.
(BM1') Let $n \in \mathbb{N}$ and $0=t_{0}<t_{1}<\cdots<t_{n}<\infty$. Then we have, for $i=1, \ldots, n$, that

$$
W_{t_{i}}^{3}-W_{t_{i-1}}^{3}=\alpha\left(W_{t_{i}}-W_{t_{i-1}}\right)+\sqrt{1-\alpha^{2}}\left(W_{t_{i}}^{\prime}-W_{t_{i-1}}^{\prime}\right) .
$$

Since W and W^{\prime} are independent under P, we conclude that the righthand side is an independent family of random variables. Since W and W^{\prime} are BMs , we additionally have that

$$
\begin{aligned}
W_{t_{i}}-W_{t_{i-1}} & \sim \mathcal{N}\left(0, t_{i}-t_{i-1}\right), i=1, \ldots, n \\
W_{t_{i}}^{\prime}-W_{t_{i-1}}^{\prime} & \sim \mathcal{N}\left(0, t_{i}-t_{i-1}\right), i=1, \ldots, n
\end{aligned}
$$

Recall the general fact that if $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and $Y \sim \mathcal{N}\left(0, \eta^{2}\right)$ are independent, then we have for any linear combination $s_{1} X+s_{2} Y$ that

$$
s_{1} X+s_{2} Y \sim \mathcal{N}\left(0, s_{1}^{2} \sigma^{2}+s_{2}^{2} \eta^{2}\right)
$$

Using this, we conclude that

$$
\alpha\left(W_{t_{i}}-W_{t_{i-1}}\right)+\sqrt{1-\alpha^{2}}\left(W_{t_{i}}^{\prime}-W_{t_{i-1}}^{\prime}\right) \sim \mathcal{N}\left(0, t_{i}-t_{i-1}\right)
$$

since

$$
\alpha^{2}\left(t_{i}-t_{i-1}\right)+\left(1-\alpha^{2}\right)\left(t_{i}-t_{i-1}\right)=t_{i}-t_{i-1} .
$$

(BM2) This is evident, since W^{3} is a linear combination of two processes whose paths are P-a.s. continuous.
(d) Two possible choices are $W= \pm W^{\prime}$. In this case, we have

$$
W^{3}=\left(\alpha \pm \sqrt{1-\alpha^{2}}\right) W
$$

which is not a Brownian motion because $W_{1}^{3} \sim \mathcal{N}\left(0,\left(\alpha \pm \sqrt{1-\alpha^{2}}\right)^{2}\right)$ and $\left(\alpha \pm \sqrt{1-\alpha^{2}}\right)^{2} \neq 1$ in general.

Exercise 6.3 Let $W=\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is a filtration satisfying the usual conditions.
(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an arbitrary convex function. Show that if the stochastic process $\left(f\left(W_{t}\right)\right)_{t \geq 0}$ is integrable, then it is a (P, \mathbb{F})-submartingale.
Hint: We have done something similar in discrete time.
(b) Given a (P, \mathbb{F})-martingale $\left(M_{t}\right)_{t \geq 0}$ and a measurable function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$, show that the process

$$
\left(M_{t}+g(t)\right)_{t \geq 0}
$$

is a (P, \mathbb{F})-supermartingale if and only if g is decreasing, and a (P, \mathbb{F})-submartingale if and only if g is increasing.

Solution 6.3

(a) First recall that W is a (P, \mathbb{F})-martingale. Adaptedness is clear since f is continuous. Indeed, recall that any real-valued convex function is continuous on the interior of its domain. Integrability is assumed. Then by Jensen's inequality for conditional expectations, we can compute

$$
E\left[f\left(W_{t}\right) \mid \mathcal{F}_{s}\right] \geq f\left(E\left[W_{t} \mid \mathcal{F}_{s}\right]\right)=f\left(W_{s}\right) P \text {-a.s. }
$$

for all $t \geq s$, and thus conclude that $f(W)$ is a (P, \mathbb{F})-submartingale.
(b) For any measurable function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$, we have that, for each $t \geq 0, M_{t}+g(t)$ is \mathcal{F}_{t}-measurable and

$$
E\left[\left|M_{t}+g(t)\right|\right] \leq E\left[\left|M_{t}\right|\right]+E[|g(t)|]=E\left[\left|M_{t}\right|\right]+|g(t)|<\infty .
$$

Hence $\left(M_{t}+g(t)\right)_{t \geq 0}$ is adapted and integrable. We can then compute

$$
E\left[M_{t}+g(t) \mid \mathcal{F}_{s}\right]=E\left[M_{t} \mid \mathcal{F}_{s}\right]+g(t)=M_{s}+g(s)+g(t)-g(s) P \text {-a.s. }
$$

for all $t \geq s$. As a result, $\left(M_{t}+g(t)\right)_{t \geq 0}$ has the (P, \mathbb{F})-supermartingale property, i.e.

$$
E\left[M_{t}+g(t) \mid \mathcal{F}_{s}\right] \leq M_{s}+g(s) P \text {-a.s. }
$$

for all $t>s$, if and only if g is decreasing. Analogously, $\left(M_{t}+g(t)\right)_{t \geq 0}$ has the (P, \mathbb{F})-submartingale property, i.e.

$$
E\left[M_{t}+g(t) \mid \mathcal{F}_{s}\right] \geq M_{s}+g(s) P \text {-a.s. }
$$

for all $t>s$, if and only if g is increasing.

