Mathematical Foundations for Finance Exercise Sheet 6

Please hand in your solutions by 12:00 on Wednesday, November 8 via the course homepage.

Exercise 6.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$. Let $X = (X_k)_{k \in \mathbb{N}_0}$ be an adapted and integrable process.

(a) Find the *Doob decomposition* of X. In other words, prove that there exist a martingale $M = (M_k)_{k \in \mathbb{N}_0}$ and an integrable and predictable process $A = (A_k)_{k \in \mathbb{N}_0}$ that are both null at zero, and such that

$$X = X_0 + M + A P-a.s.$$

Hint: You may define $M_k := \sum_{j=1}^k (X_j - E[X_j \mid \mathcal{F}_{j-1}])$, for $k \in \mathbb{N}$.

(b) Prove that M and A are unique up to P-a.s. equality.

Exercise 6.2 Let $W = (W_t)_{t \ge 0}$ and $W' = (W'_t)_{t \ge 0}$ be two *independent* Brownian motions (BM) defined on some probability space (Ω, \mathcal{F}, P) . Show that

- (a) $W^1 := -W$ is a BM.
- (b) $W_t^2 := W_{T+t} W_T$, for $t \ge 0$, is a BM for any $T \in (0, \infty)$.
- (c) $W^3 := \alpha W + \sqrt{1 \alpha^2} W'$ is a BM for any $\alpha \in [0, 1]$.
- (d) Show that the independence of W and W' in (c) cannot be omitted, i.e., if W and W' are *not* independent, then W^3 need not be a BM. Give two examples.

Exercise 6.3 Let $W = (W_t)_{t \ge 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$ is a filtration satisfying the usual conditions.

- (a) Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary convex function. Show that if the stochastic process $(f(W_t))_{t\geq 0}$ is integrable, then it is a (P, \mathbb{F}) -submartingale. Hint: We have done something similar in discrete time.
- (b) Given a (P, \mathbb{F}) -martingale $(M_t)_{t \ge 0}$ and a measurable function $g \colon \mathbb{R}_+ \to \mathbb{R}$, show that the process

$$\left(M_t + g(t)\right)_{t \ge 0}$$

Updated: November 1, 2023

1/2

is a (P, \mathbb{F}) -supermartingale if and only if g is decreasing, and a (P, \mathbb{F}) -submartingale if and only if g is increasing.