Mathematical Foundations for Finance

Exercise Sheet 7

Please hand in your solutions by 12:00 on Wednesday, November 15 via the course homepage.

Exercise 7.1 Let $W = (W_t)_{t\geq 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t\geq 0}$ is a filtration satisfying the usual conditions.

- (a) Show that the following stochastic processes are (P, \mathbb{F}) -submartingales, but not martingales:
 - (i) W^2 ,
 - (ii) $e^{\alpha W}$ for any $\alpha \in \mathbb{R}$.

Hint: You may use the results from Exercise 6.3(b) and Exercise 6.3(a), respectively.

(b) Show that any (P, \mathbb{F}) -local martingale which is null at 0 and uniformly bounded from below is a (P, \mathbb{F}) -supermartingale.

Hint: We have done this in discrete time already.

Exercise 7.2 Let $W = (W_t)_{t \geq 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \geq 0}$ is a filtration satisfying the usual conditions. For any constants $a, b \in \mathbb{R}$ such that a < 0 < b, consider the function $\tau : \Omega \to [0, \infty]$ given by

$$\tau := \inf\{t \geqslant 0 : W_t \notin [a, b]\}.$$

(a) Show that τ is a stopping time.

Hint: You may use the right-continuity of the filtration \mathbb{F} .

(b) Prove that $E[W_{\tau}] = 0$.

Hint: You may apply the dominated convergence theorem.

(c) Compute $P[W_{\tau} = a]$.

Hint: You may use the result from (b).

Updated: November 8, 2023