Mathematical Foundations for Finance Exercise Sheet 8

Exercise 8.1 Let $W = (W_t)_{t \ge 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$ is a filtration satisfying the usual conditions.

(a) For some constants $S_0 > 0$, $\mu \in \mathbb{R}$ and $\sigma > 0$, we define the geometric Brownian motion $S = (S_t)_{t \ge 0}$ as follows

$$S_t := S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right).$$

Compute $\lim_{t\to\infty} S_t$ when $\mu \neq \frac{\sigma^2}{2}$. Determine whether the limit exists if $\mu = \frac{\sigma^2}{2}$. *Hint: You may use the law of the iterated logarithm.*

(b) Prove that

$$E[W_t^3 - W_s^3 | \mathcal{F}_s] = 3(t-s)W_s P$$
-a.s., for $0 \le s < t$.

Hint: You may compute $E[(W_t - W_s)^3 \mid \mathcal{F}_s]$.

Solution 8.1

(a) For any $t \ge 0$, we can rewrite S_t as

$$S_{t} = S_{0} \exp\left(\left(\mu - \frac{\sigma^{2}}{2}\right)t + \sigma\sqrt{2t\log\log t}\frac{W_{t}}{\sqrt{2t\log\log t}}\right)$$
$$= S_{0} \exp\left(\sqrt{2t\log\log t}\left(\left(\mu - \frac{\sigma^{2}}{2}\right)\frac{t}{\sqrt{2t\log\log t}} + \sigma\frac{W_{t}}{\sqrt{2t\log\log t}}\right)\right).$$

Since

$$\lim_{t \to \infty} \sqrt{2t \log \log t} = +\infty \quad \text{and} \quad \lim_{t \to \infty} \frac{t}{\sqrt{2t \log \log t}} = +\infty$$

and by the law of the iterated logarithm, it follows that:

- when $\mu > \frac{\sigma^2}{2}$, $\lim_{t \to \infty} S_t = +\infty P\text{-a.s.};$
- when $\mu < \frac{\sigma^2}{2}$,

$$\lim_{t \to \infty} S_t = 0 \ P\text{-a.s.}$$

Updated: November 16, 2023

If $\mu = \frac{\sigma^2}{2}$, the limit $\lim_{t\to\infty} S_t$ does not exist since

$$P\left(\liminf_{t\to\infty} S_t = 0\right) = 1 \text{ and } P\left(\limsup_{t\to\infty} S_t = +\infty\right) = 1.$$

(b) To simplify notation, we omit "*P*-a.s." from all equalities below. Let us fix some $0 \le s < t$. Since $W_t - W_s$ is independent of \mathcal{F}_s , so is $(W_t - W_s)^3$. Hence,

$$E[(W_t - W_s)^3 \mid \mathcal{F}_s] = E[(W_t - W_s)^3].$$

Since $W_t - W_s \sim N(0, t - s)$, then $E[(W_t - W_s)^3] = 0$, and thus

$$E[W_t^3 - W_s^3 \mid \mathcal{F}_s] = E[W_t^3 - W_s^3 \mid \mathcal{F}_s] - E[(W_t - W_s)^3 \mid \mathcal{F}_s]$$

= $E[3W_t^2W_s - 3W_tW_s^2 \mid \mathcal{F}_s].$

From the fact that W_t and W_s are normal random variables, we deduce that W_t, W_t^2, W_s, W_s^2 , and all products, are integrable. Hence, we get

$$E[W_t^3 - W_s^3 | \mathcal{F}_s] = 3W_s E[W_t^2 | \mathcal{F}_s] - 3W_s^2 E[W_t | \mathcal{F}_s] = 3W_s(W_s^2 + t - s) - 3W_s^3 = 3(t - s)W_s,$$

where in the second step we have used that $(W)_{t\geq 0}$ and $(W_t^2 - t)_{t\geq 0}$ are martingales.

Exercise 8.2 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$ is a filtration satisfying the usual conditions. On this space, let M a local martingale null at 0 that satisfies $\sup_{0 \le t \le T} |M_t| \in L^2$ for some $T \in \mathbb{R}$.

- (a) Show that M is a square-integrable martingale on [0, T]. Hint: You may use dominated convergence theorem.
- (b) Let [M] be the square bracket process of M. Prove that

$$E\left[\left[M\right]_{t}-\left[M\right]_{s}\middle|\mathcal{F}_{s}\right] = \operatorname{Var}[M_{t}-M_{s}\,|\mathcal{F}_{s}] \text{ P-a.s., for } 0 \le s \le t \le T.$$

Hint: You may use that $\operatorname{Var}[X | \mathcal{G}] = E\left[(X - E[X | \mathcal{G}])^2 | \mathcal{G} \right].$

Solution 8.2

(a) The process M is adapted by definition since it is a local martingale. Moreover, for any $s \in [0, T]$, it holds that

$$|M_s|^2 \le |M_T^*|^2$$
, where $M_T^* := \sup_{0 \le u \le T} |M_u|$.

By assumption, $M_T^* \in L^2$ and thus M is square-integrable on [0, T].

Updated: November 16, 2023

Now, let $(\tau_n)_{n\in\mathbb{N}}$ be a localizing sequence for M. For every fixed $n\in\mathbb{N}$, we have that

$$E[M_{\tau_n \wedge t} | \mathcal{F}_s] = M_{\tau_n \wedge s} P\text{-a.s., for } 0 \le s \le t \le T,$$
(1)

because M is a local martingale. Since $|M_{\tau_n \wedge t}|$ is bounded from above by the integrable random variable M_T^* , for all $0 \leq t \leq T$, the dominated convergence theorem gives us that

$$\lim_{n \to \infty} E\left[M_{\tau_n \wedge t} \,|\, \mathcal{F}_s\right] = E\left[\lim_{n \to \infty} M_{\tau_n \wedge t} \,\Big|\, \mathcal{F}_s\right] = E\left[M_t \,|\, \mathcal{F}_s\right] \,P\text{-a.s.} \tag{2}$$

On the other hand, we have for the right-hand side of (1) that

$$\lim_{n \to \infty} M_{\tau_n \wedge s} = M_s \ P\text{-a.s.},$$

which, together with (2), gives us the martingale property for M on [0, T] and concludes the proof.

(b) Since M is a square-integrable martingale on [0, T], the square bracket process [M] is integrable and $M^2 - [M]$ is a martingale according to Theorem V.1.1 in the lecture notes. Therefore, for all $0 \le s \le t \le T$, it holds that

$$E\left[\left[M\right]_{t}-\left[M\right]_{s}\middle|\mathcal{F}_{s}\right] = E\left[M_{t}^{2}-M_{s}^{2}\middle|\mathcal{F}_{s}\right]$$
$$= E\left[\left(M_{t}-M_{s}\right)^{2}\middle|\mathcal{F}_{s}\right]$$
$$= E\left[\left(M_{t}-E\left[M_{t}\middle|\mathcal{F}_{s}\right]\right)^{2}\middle|\mathcal{F}_{s}\right]$$
$$= E\left[\left(M_{t}-M_{s}+M_{s}-E\left[M_{t}\middle|\mathcal{F}_{s}\right]\right)^{2}\middle|\mathcal{F}_{s}\right]$$
$$= E\left[\left(\left(M_{t}-M_{s}\right)-E\left[M_{t}-M_{s}\middle|\mathcal{F}_{s}\right]\right)^{2}\middle|\mathcal{F}_{s}\right]$$
$$= \operatorname{Var}[M_{t}-M_{s}\middle|\mathcal{F}_{s}]P\text{-a.s.}$$

Exercise 8.3 Let (Ω, \mathcal{F}, P) a probability space. We consider a sequence $(Y_k)_{k \in \mathbb{N}}$ of square-integrable and independent random variables and the filtration $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$ given by $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_k = \sigma(Y_1, \ldots, Y_k)$ for all $k \in \mathbb{N}$. We assume that $(Y_k)_{k \in \mathbb{N}}$ are identically distributed, with $\mu := E[Y_k] \in \mathbb{R}$ and $\sigma^2 := \operatorname{Var}[Y_k] > 0$, for $k \in \mathbb{N}$. Define the process $X = (X_n)_{n \in \mathbb{N}_0}$ by

$$X_n = \sum_{k=1}^n Y_k$$
, for $n \in \mathbb{N}_0$.

Note that X is adapted to \mathbb{F} and integrable.

Updated: November 16, 2023

condition $\Delta[M] = (\Delta M)^2$.

- (a) Derive the Doob decomposition of X. In other words, find the martingale $M = (M_n)_{n \in \mathbb{N}_0}$ and the predictable and integrable process $A = (A_n)_{n \in \mathbb{N}_0}$ that are both null at zero and such that X = M + A P-a.s. Deduce that M and A are square-integrable. Hint: We have done it in Exercise 6.1(a).
- (b) Find the optional quadratic variation [M] = ([M]_n)_{n∈N₀} of the square-integrable martingale M.
 Hint: You may use Theorem V.1.1 in the lecture notes, and in particular the
- (c) Explicitly derive the predictable quadratic variation $\langle M \rangle = (\langle M \rangle_n)_{n \in \mathbb{N}_0}$ of the square-integrable martingale M.

Solution 8.3 To simplify notation, we omit "*P*-a.s." from all equalities below.

(a) Let us fix $n \in \mathbb{N}$. From Exercise 6.1(a), we know that

$$M_{n} = \sum_{j=1}^{n} \left(X_{j} - E[X_{j} | \mathcal{F}_{j-1}] \right)$$
$$= \sum_{j=1}^{n} \sum_{k=1}^{j} \left(Y_{k} - E[Y_{k} | \mathcal{F}_{j-1}] \right)$$
$$= \sum_{j=1}^{n} \left(Y_{j} - E[Y_{j} | \mathcal{F}_{j-1}] \right)$$

since Y_k is \mathcal{F}_{j-1} -measurable for all $k \leq j-1$. Moreover, Y_j is independent of \mathcal{F}_{j-1} , and thus

$$M_n = \sum_{j=1}^n (Y_j - E[Y_j]) = X_n - n\mu.$$

Hence,

$$A_n = X_n - M_n = n\mu.$$

We conclude that both M and A are square-integrable since so is the process X by assumption.

(b) Since the process M is a square-integrable martingale, Theorem V.1.1 from the lecture notes states that there exists a unique adapted increasing RCLL process $[M] = ([M]_n)_{n \in \mathbb{N}_0}$ null at 0 with $\Delta[M] = (\Delta M)^2$ and having the property that $M^2 - [M]$ is a local martingale. Hence, for each $n \in \mathbb{N}$, we have

$$\Delta[M]_n = (\Delta M_n)^2 = (M_n - M_{n-1})^2 = (Y_n - \mu)^2,$$

so that

$$[M]_n = \sum_{j=1}^n \Delta[M]_j = \sum_{j=1}^n (Y_j - \mu)^2,$$

Updated: November 16, 2023

(c) Since the process [M] is integrable, we know there exists a unique increasing predictable and integrable process $\langle M \rangle = (\langle M \rangle_n)_{n \in \mathbb{N}_0}$ null at 0 such that $[M] - \langle M \rangle$ is a martingale. Thus, for each $n \in \mathbb{N}$, it holds that

$$E\left[[M]_n - \langle M \rangle_n \,\Big| \,\mathcal{F}_{n-1}\right] = [M]_{n-1} - \langle M \rangle_{n-1}.$$

The fact that $\langle M \rangle$ is predictable gives that

$$\langle M \rangle_n - \langle M \rangle_{n-1} = E \left[[M]_n - [M]_{n-1} \middle| \mathcal{F}_{n-1} \right]$$

= $E \left[(Y_n - \mu)^2 \middle| \mathcal{F}_{n-1} \right] = \operatorname{Var}[Y_n] = \sigma^2,$

which in turn gives that $\langle M \rangle_n = n \sigma^2$.