Mathematical Foundations for Finance Exercise Sheet 8

Exercise 8.1 Let $W=\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is a filtration satisfying the usual conditions.
(a) For some constants $S_{0}>0, \mu \in \mathbb{R}$ and $\sigma>0$, we define the geometric Brownian motion $S=\left(S_{t}\right)_{t \geqslant 0}$ as follows

$$
S_{t}:=S_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}\right)
$$

Compute $\lim _{t \rightarrow \infty} S_{t}$ when $\mu \neq \frac{\sigma^{2}}{2}$. Determine whether the limit exists if $\mu=\frac{\sigma^{2}}{2}$. Hint: You may use the law of the iterated logarithm.
(b) Prove that

$$
E\left[W_{t}^{3}-W_{s}^{3} \mid \mathcal{F}_{s}\right]=3(t-s) W_{s} P \text {-a.s., for } 0 \leq s<t .
$$

Hint: You may compute $E\left[\left(W_{t}-W_{s}\right)^{3} \mid \mathcal{F}_{s}\right]$.

Solution 8.1

(a) For any $t \geq 0$, we can rewrite S_{t} as

$$
\begin{aligned}
S_{t} & =S_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma \sqrt{2 t \log \log t} \frac{W_{t}}{\sqrt{2 t \log \log t}}\right) \\
& =S_{0} \exp \left(\sqrt{2 t \log \log t}\left(\left(\mu-\frac{\sigma^{2}}{2}\right) \frac{t}{\sqrt{2 t \log \log t}}+\sigma \frac{W_{t}}{\sqrt{2 t \log \log t}}\right)\right)
\end{aligned}
$$

Since

$$
\lim _{t \rightarrow \infty} \sqrt{2 t \log \log t}=+\infty \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{t}{\sqrt{2 t \log \log t}}=+\infty
$$

and by the law of the iterated logarithm, it follows that:

- when $\mu>\frac{\sigma^{2}}{2}$,

$$
\lim _{t \rightarrow \infty} S_{t}=+\infty P \text {-a.s. }
$$

- when $\mu<\frac{\sigma^{2}}{2}$,

$$
\lim _{t \rightarrow \infty} S_{t}=0 P \text {-a.s. }
$$

If $\mu=\frac{\sigma^{2}}{2}$, the limit $\lim _{t \rightarrow \infty} S_{t}$ does not exist since

$$
P\left(\liminf _{t \rightarrow \infty} S_{t}=0\right)=1 \quad \text { and } \quad P\left(\limsup _{t \rightarrow \infty} S_{t}=+\infty\right)=1
$$

(b) To simplify notation, we omit " P-a.s." from all equalities below. Let us fix some $0 \leq s<t$. Since $W_{t}-W_{s}$ is independent of \mathcal{F}_{s}, so is $\left(W_{t}-W_{s}\right)^{3}$. Hence,

$$
E\left[\left(W_{t}-W_{s}\right)^{3} \mid \mathcal{F}_{s}\right]=E\left[\left(W_{t}-W_{s}\right)^{3}\right]
$$

Since $W_{t}-W_{s} \sim N(0, t-s)$, then $E\left[\left(W_{t}-W_{s}\right)^{3}\right]=0$, and thus

$$
\begin{aligned}
E\left[W_{t}^{3}-W_{s}^{3} \mid \mathcal{F}_{s}\right] & =E\left[W_{t}^{3}-W_{s}^{3} \mid \mathcal{F}_{s}\right]-E\left[\left(W_{t}-W_{s}\right)^{3} \mid \mathcal{F}_{s}\right] \\
& =E\left[3 W_{t}^{2} W_{s}-3 W_{t} W_{s}^{2} \mid \mathcal{F}_{s}\right]
\end{aligned}
$$

From the fact that W_{t} and W_{s} are normal random variables, we deduce that $W_{t}, W_{t}^{2}, W_{s}, W_{s}^{2}$, and all products, are integrable. Hence, we get

$$
\begin{aligned}
E\left[W_{t}^{3}-W_{s}^{3} \mid \mathcal{F}_{s}\right] & =3 W_{s} E\left[W_{t}^{2} \mid \mathcal{F}_{s}\right]-3 W_{s}^{2} E\left[W_{t} \mid \mathcal{F}_{s}\right] \\
& =3 W_{s}\left(W_{s}^{2}+t-s\right)-3 W_{s}^{3} \\
& =3(t-s) W_{s}
\end{aligned}
$$

where in the second step we have used that $(W)_{t \geqslant 0}$ and $\left(W_{t}^{2}-t\right)_{t \geqslant 0}$ are martingales.

Exercise 8.2 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is a filtration satisfying the usual conditions. On this space, let M a local martingale null at 0 that satisfies $\sup _{0 \leq t \leq T}\left|M_{t}\right| \in L^{2}$ for some $T \in \mathbb{R}$.
(a) Show that M is a square-integrable martingale on $[0, T]$.

Hint: You may use dominated convergence theorem.
(b) Let $[M]$ be the square bracket process of M. Prove that

$$
E\left[[M]_{t}-[M]_{s} \mid \mathcal{F}_{s}\right]=\operatorname{Var}\left[M_{t}-M_{s} \mid \mathcal{F}_{s}\right] P \text {-a.s., for } 0 \leq s \leq t \leq T
$$

Hint: You may use that $\operatorname{Var}[X \mid \mathcal{G}]=E\left[(X-E[X \mid \mathcal{G}])^{2} \mid \mathcal{G}\right]$.

Solution 8.2

(a) The process M is adapted by definition since it is a local martingale. Moreover, for any $s \in[0, T]$, it holds that

$$
\left|M_{s}\right|^{2} \leq\left|M_{T}^{*}\right|^{2}, \text { where } M_{T}^{*}:=\sup _{0 \leq u \leq T}\left|M_{u}\right|
$$

By assumption, $M_{T}^{*} \in L^{2}$ and thus M is square-integrable on $[0, T]$.

Now, let $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ be a localizing sequence for M. For every fixed $n \in \mathbb{N}$, we have that

$$
\begin{equation*}
E\left[M_{\tau_{n} \wedge t} \mid \mathcal{F}_{s}\right]=M_{\tau_{n} \wedge s} P \text {-a.s., for } 0 \leq s \leq t \leq T \tag{1}
\end{equation*}
$$

because M is a local martingale. Since $\left|M_{\tau_{n} \wedge t}\right|$ is bounded from above by the integrable random variable M_{T}^{*}, for all $0 \leq t \leq T$, the dominated convergence theorem gives us that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[M_{\tau_{n} \wedge t} \mid \mathcal{F}_{s}\right]=E\left[\lim _{n \rightarrow \infty} M_{\tau_{n} \wedge t} \mid \mathcal{F}_{s}\right]=E\left[M_{t} \mid \mathcal{F}_{s}\right] P \text {-a.s. } \tag{2}
\end{equation*}
$$

On the other hand, we have for the right-hand side of (1) that

$$
\lim _{n \rightarrow \infty} M_{\tau_{n} \wedge s}=M_{s} P \text {-a.s. }
$$

which, together with (2), gives us the martingale property for M on $[0, T]$ and concludes the proof.
(b) Since M is a square-integrable martingale on $[0, T]$, the square bracket process [M] is integrable and $M^{2}-[M]$ is a martingale according to Theorem V.1.1 in the lecture notes. Therefore, for all $0 \leq s \leq t \leq T$, it holds that

$$
\begin{aligned}
E\left[[M]_{t}-[M]_{s} \mid \mathcal{F}_{s}\right] & =E\left[M_{t}^{2}-M_{s}^{2} \mid \mathcal{F}_{s}\right] \\
& =E\left[\left(M_{t}-M_{s}\right)^{2} \mid \mathcal{F}_{s}\right] \\
& =E\left[\left(M_{t}-E\left[M_{t} \mid \mathcal{F}_{s}\right]\right)^{2} \mid \mathcal{F}_{s}\right] \\
& =E\left[\left(M_{t}-M_{s}+M_{s}-E\left[M_{t} \mid \mathcal{F}_{s}\right]\right)^{2} \mid \mathcal{F}_{s}\right] \\
& =E\left[\left(\left(M_{t}-M_{s}\right)-E\left[M_{t}-M_{s} \mid \mathcal{F}_{s}\right]\right)^{2} \mid \mathcal{F}_{s}\right] \\
& =\operatorname{Var}\left[M_{t}-M_{s} \mid \mathcal{F}_{s}\right] P \text {-a.s. }
\end{aligned}
$$

Exercise 8.3 Let (Ω, \mathcal{F}, P) a probability space. We consider a sequence $\left(Y_{k}\right)_{k \in \mathbb{N}}$ of square-integrable and independent random variables and the filtration $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k \in \mathbb{N}_{0}}$ given by $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{k}=\sigma\left(Y_{1}, \ldots, Y_{k}\right)$ for all $k \in \mathbb{N}$. We assume that $\left(Y_{k}\right)_{k \in \mathbb{N}}$ are identically distributed, with $\mu:=E\left[Y_{k}\right] \in \mathbb{R}$ and $\sigma^{2}:=\operatorname{Var}\left[Y_{k}\right]>0$, for $k \in \mathbb{N}$. Define the process $X=\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ by

$$
X_{n}=\sum_{k=1}^{n} Y_{k}, \text { for } n \in \mathbb{N}_{0}
$$

Note that X is adapted to \mathbb{F} and integrable.
(a) Derive the Doob decomposition of X. In other words, find the martingale $M=\left(M_{n}\right)_{n \in \mathbb{N}_{0}}$ and the predictable and integrable process $A=\left(A_{n}\right)_{n \in \mathbb{N}_{0}}$ that are both null at zero and such that $X=M+A P$-a.s. Deduce that M and A are square-integrable.
Hint: We have done it in Exercise 6.1(a).
(b) Find the optional quadratic variation $[M]=\left([M]_{n}\right)_{n \in \mathbb{N}_{0}}$ of the square-integrable martingale M.
Hint: You may use Theorem V.1.1 in the lecture notes, and in particular the condition $\Delta[M]=(\Delta M)^{2}$.
(c) Explicitly derive the predictable quadratic variation $\langle M\rangle=\left(\langle M\rangle_{n}\right)_{n \in \mathbb{N}_{0}}$ of the square-integrable martingale M.

Solution 8.3 To simplify notation, we omit " P-a.s." from all equalities below.
(a) Let us fix $n \in \mathbb{N}$. From Exercise 6.1(a), we know that

$$
\begin{aligned}
M_{n} & =\sum_{j=1}^{n}\left(X_{j}-E\left[X_{j} \mid \mathcal{F}_{j-1}\right]\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{j}\left(Y_{k}-E\left[Y_{k} \mid \mathcal{F}_{j-1}\right]\right) \\
& =\sum_{j=1}^{n}\left(Y_{j}-E\left[Y_{j} \mid \mathcal{F}_{j-1}\right]\right)
\end{aligned}
$$

since Y_{k} is \mathcal{F}_{j-1}-measurable for all $k \leq j-1$. Moreover, Y_{j} is independent of \mathcal{F}_{j-1}, and thus

$$
M_{n}=\sum_{j=1}^{n}\left(Y_{j}-E\left[Y_{j}\right]\right)=X_{n}-n \mu .
$$

Hence,

$$
A_{n}=X_{n}-M_{n}=n \mu
$$

We conclude that both M and A are square-integrable since so is the process X by assumption.
(b) Since the process M is a square-integrable martingale, Theorem V.1.1 from the lecture notes states that there exists a unique adapted increasing RCLL process $[M]=\left([M]_{n}\right)_{n \in \mathbb{N}_{0}}$ null at 0 with $\Delta[M]=(\Delta M)^{2}$ and having the property that $M^{2}-[M]$ is a local martingale. Hence, for each $n \in \mathbb{N}$, we have

$$
\Delta[M]_{n}=\left(\Delta M_{n}\right)^{2}=\left(M_{n}-M_{n-1}\right)^{2}=\left(Y_{n}-\mu\right)^{2}
$$

so that

$$
[M]_{n}=\sum_{j=1}^{n} \Delta[M]_{j}=\sum_{j=1}^{n}\left(Y_{j}-\mu\right)^{2}
$$

(c) Since the process $[M]$ is integrable, we know there exists a unique increasing predictable and integrable process $\langle M\rangle=\left(\langle M\rangle_{n}\right)_{n \in \mathbb{N}_{0}}$ null at 0 such that $[M]-\langle M\rangle$ is a martingale. Thus, for each $n \in \mathbb{N}$, it holds that

$$
E\left[[M]_{n}-\langle M\rangle_{n} \mid \mathcal{F}_{n-1}\right]=[M]_{n-1}-\langle M\rangle_{n-1}
$$

The fact that $\langle M\rangle$ is predictable gives that

$$
\begin{aligned}
\langle M\rangle_{n}-\langle M\rangle_{n-1} & =E\left[[M]_{n}-[M]_{n-1} \mid \mathcal{F}_{n-1}\right] \\
& =E\left[\left(Y_{n}-\mu\right)^{2} \mid \mathcal{F}_{n-1}\right]=\operatorname{Var}\left[Y_{n}\right]=\sigma^{2},
\end{aligned}
$$

which in turn gives that $\langle M\rangle_{n}=n \sigma^{2}$.

