Mathematical Foundations for Finance Exercise Sheet 8

Please hand in your solutions by 12:00 on Wednesday, November 22 via the course homepage.

Exercise 8.1 Let $W = (W_t)_{t\geq 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t\geq 0}$ is a filtration satisfying the usual conditions.

(a) For some constants $S_0 > 0$, $\mu \in \mathbb{R}$ and $\sigma > 0$, we define the geometric Brownian motion $S = (S_t)_{t \ge 0}$ as follows

$$S_t := S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right).$$

Compute $\lim_{t\to\infty} S_t$ when $\mu \neq \frac{\sigma^2}{2}$. Determine whether the limit exists if $\mu = \frac{\sigma^2}{2}$. *Hint: You may use the law of the iterated logarithm.*

(b) Prove that

$$E[W_t^3 - W_s^3 \mid \mathcal{F}_s] = 3(t-s)W_s P$$
-a.s., for $0 \le s < t$.

Hint: You may compute $E[(W_t - W_s)^3 \mid \mathcal{F}_s]$.

Exercise 8.2 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$ is a filtration satisfying the usual conditions. On this space, let M a local martingale null at 0 that satisfies $\sup_{0 \le t \le T} |M_t| \in L^2$ for some $T \in \mathbb{R}$.

- (a) Show that M is a square-integrable martingale on [0, T]. Hint: You may use dominated convergence theorem.
- (b) Let [M] be the square bracket process of M. Prove that

$$E\left[\left[M\right]_{t}-\left[M\right]_{s}\middle|\mathcal{F}_{s}\right] = \operatorname{Var}[M_{t}-M_{s}\,|\mathcal{F}_{s}] \text{ P-a.s., for } 0 \le s \le t \le T.$$

Hint: You may use that $\operatorname{Var}[X | \mathcal{G}] = E\left[\left(X - E\left[X | \mathcal{G}\right]\right)^2 | \mathcal{G}\right].$

Exercise 8.3 Let (Ω, \mathcal{F}, P) a probability space. We consider a sequence $(Y_k)_{k \in \mathbb{N}}$ of square-integrable and independent random variables and the filtration $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$ given by $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_k = \sigma(Y_1, \ldots, Y_k)$ for all $k \in \mathbb{N}$. We assume that $(Y_k)_{k \in \mathbb{N}}$

Updated: November 15, 2023

1/2

are identically distributed, with $\mu := E[Y_k] \in \mathbb{R}$ and $\sigma^2 := \operatorname{Var}[Y_k] > 0$, for $k \in \mathbb{N}$. Define the process $X = (X_n)_{n \in \mathbb{N}_0}$ by

$$X_n = \sum_{k=1}^n Y_k$$
, for $n \in \mathbb{N}_0$.

Note that X is adapted to \mathbb{F} and integrable.

(a) Derive the Doob decomposition of X. In other words, find the martingale $M = (M_n)_{n \in \mathbb{N}_0}$ and the predictable and integrable process $A = (A_n)_{n \in \mathbb{N}_0}$ that are both null at zero and such that X = M + A P-a.s. Deduce that M and A are square-integrable.

Hint: We have done it in Exercise 6.1(a).

- (b) Find the optional quadratic variation [M] = ([M]_n)_{n∈N₀} of the square-integrable martingale M.
 Hint: You may use Theorem V.1.1 in the lecture notes, and in particular the condition Δ[M] = (ΔM)².
- (c) Explicitly derive the predictable quadratic variation $\langle M \rangle = (\langle M \rangle_n)_{n \in \mathbb{N}_0}$ of the square-integrable martingale M.