Mathematical Foundations for Finance Exercise Sheet 8

Please hand in your solutions by 12:00 on Wednesday, November 22 via the course homepage.

Exercise 8.1 Let $W=\left(W_{t}\right)_{t>0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is a filtration satisfying the usual conditions.
(a) For some constants $S_{0}>0, \mu \in \mathbb{R}$ and $\sigma>0$, we define the geometric Brownian motion $S=\left(S_{t}\right)_{t \geqslant 0}$ as follows

$$
S_{t}:=S_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}\right)
$$

Compute $\lim _{t \rightarrow \infty} S_{t}$ when $\mu \neq \frac{\sigma^{2}}{2}$. Determine whether the limit exists if $\mu=\frac{\sigma^{2}}{2}$. Hint: You may use the law of the iterated logarithm.
(b) Prove that

$$
E\left[W_{t}^{3}-W_{s}^{3} \mid \mathcal{F}_{s}\right]=3(t-s) W_{s} P \text {-a.s., for } 0 \leq s<t .
$$

Hint: You may compute $E\left[\left(W_{t}-W_{s}\right)^{3} \mid \mathcal{F}_{s}\right]$.

Exercise 8.2 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is a filtration satisfying the usual conditions. On this space, let M a local martingale null at 0 that satisfies $\sup _{0 \leq t \leq T}\left|M_{t}\right| \in L^{2}$ for some $T \in \mathbb{R}$.
(a) Show that M is a square-integrable martingale on $[0, T]$.

Hint: You may use dominated convergence theorem.
(b) Let $[M]$ be the square bracket process of M. Prove that

$$
E\left[[M]_{t}-[M]_{s} \mid \mathcal{F}_{s}\right]=\operatorname{Var}\left[M_{t}-M_{s} \mid \mathcal{F}_{s}\right] P \text {-a.s., for } 0 \leq s \leq t \leq T \text {. }
$$

Hint: You may use that $\operatorname{Var}[X \mid \mathcal{G}]=E\left[(X-E[X \mid \mathcal{G}])^{2} \mid \mathcal{G}\right]$.

Exercise 8.3 Let (Ω, \mathcal{F}, P) a probability space. We consider a sequence $\left(Y_{k}\right)_{k \in \mathbb{N}}$ of square-integrable and independent random variables and the filtration $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k \in \mathbb{N}_{0}}$ given by $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{k}=\sigma\left(Y_{1}, \ldots, Y_{k}\right)$ for all $k \in \mathbb{N}$. We assume that $\left(Y_{k}\right)_{k \in \mathbb{N}}$
are identically distributed, with $\mu:=E\left[Y_{k}\right] \in \mathbb{R}$ and $\sigma^{2}:=\operatorname{Var}\left[Y_{k}\right]>0$, for $k \in \mathbb{N}$. Define the process $X=\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ by

$$
X_{n}=\sum_{k=1}^{n} Y_{k}, \text { for } n \in \mathbb{N}_{0} .
$$

Note that X is adapted to \mathbb{F} and integrable.
(a) Derive the Doob decomposition of X. In other words, find the martingale $M=\left(M_{n}\right)_{n \in \mathbb{N}_{0}}$ and the predictable and integrable process $A=\left(A_{n}\right)_{n \in \mathbb{N}_{0}}$ that are both null at zero and such that $X=M+A P$-a.s. Deduce that M and A are square-integrable.
Hint: We have done it in Exercise 6.1(a).
(b) Find the optional quadratic variation $[M]=\left([M]_{n}\right)_{n \in \mathbb{N}_{0}}$ of the square-integrable martingale M.
Hint: You may use Theorem V.1.1 in the lecture notes, and in particular the condition $\Delta[M]=(\Delta M)^{2}$.
(c) Explicitly derive the predictable quadratic variation $\langle M\rangle=\left(\langle M\rangle_{n}\right)_{n \in \mathbb{N}_{0}}$ of the square-integrable martingale M.

