Mathematical Foundations for Finance Exercise Sheet 9

Exercise 9.1 On a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, consider an adapted process $X=\left(X_{t}\right)_{t \geq 0}$ null at 0 . Assume that X is integrable and has independent and stationary increments, i.e. $X_{t}-X_{s}$ is independent of \mathcal{F}_{s} and has the same distribution as X_{t-s} for all $t>s \geq 0$.
(a) Under which conditions on $\left(E\left[X_{t}\right)_{t \geq 0}\right.$ is X a martingale? And a supermartingale? A submartingale?
(b) From this point onward, let us assume that X is a square-integrable martingale. Prove that

$$
E\left[X_{t}^{2}\right]+E\left[X_{s}^{2}\right]=E\left[X_{t+s}^{2}\right] \text { for any } t, s \geq 0
$$

and deduce that $\left(E\left[X_{t}^{2}\right]\right)_{t \geq 0}$ is an increasing process.
Hint: You may use Exercise 8.1(a).
(c) Deduce from (b) that $E\left[X_{t}^{2}\right]=t E\left[X_{1}^{2}\right]$ for all $t \geq 0$.

Hint: Prove the result first for $t=1 / n$ for all $n \in \mathbb{N}$. Then, deduce that it holds true for all $t \in \mathbb{Q}_{+}$and use monotonicity to conclude.
(d) Prove that $\langle X\rangle_{t}=t E\left[X_{1}^{2}\right]$ for all $t \geq 0$.

Hint: You may use your result from (c).

Solution 9.1

(a) Adaptedness and integrability are already given by assumption. Let us fix some $t>s \geq 0$. We can then use the fact that X has independent and stationary increments to compute
$E\left[X_{t} \mid \mathcal{F}_{s}\right]=E\left[X_{t}-X_{s} \mid \mathcal{F}_{s}\right]+X_{s}=E\left[X_{t}-X_{s}\right]+X_{s}=E\left[X_{t-s}\right]+X_{s} P$-a.s.
As a result, X is a martingale if and only if $E\left[X_{t}\right]=0$ for all $t \geq 0$, a supermartingale if and only if $E\left[X_{t}\right] \leq 0$ for all $t \geq 0$, and a submartingale if and only if $E\left[X_{t}\right] \geq 0$ for all $t \geq 0$.
(b) Let us fix $t, s>0$. By the martingale property of X and the stationarity of the increments, we can directly compute

$$
E\left[X_{t+s}^{2}\right]-E\left[X_{t}^{2}\right]=E\left[X_{t+s}^{2}-X_{t}^{2}\right]=E\left[\left(X_{t+s}-X_{t}\right)^{2}\right]=E\left[X_{s}^{2}\right]
$$

as a consequence of Exercise 8.1(a). Consequently, we have that

$$
E\left[X_{t}^{2}\right]-E\left[X_{s}^{2}\right]=E\left[X_{t-s}^{2}\right] \geq 0 \text { for any } t \geq s
$$

proving that the process $\left(E\left[X_{t}^{2}\right]\right)_{t \geq 0}$ is increasing.
(c) Let $t=1 / n$ for some $n \in \mathbb{N}$. We want to show that $n E\left[X_{1 / n}^{2}\right]=E\left[X_{1}^{2}\right]$. It holds that

$$
\begin{aligned}
n E\left[X_{1 / n}^{2}\right]=\sum_{k=1}^{n} E\left[X_{1 / n}^{2}\right] & =\sum_{k=1}^{n}\left(E\left[X_{k / n}^{2}\right]-E\left[X_{(k-1) / n}^{2}\right]\right) \\
& =E\left[X_{1}^{2}\right]-E\left[X_{0}^{2}\right]=E\left[X_{1}^{2}\right],
\end{aligned}
$$

where in the second equality we have used our result from (b). If we now consider an arbitrary number $\ell / n \in \mathbb{Q}_{+}$, we can use the same technique as in the above to compute

$$
\ell E\left[X_{1 / n}^{2}\right]=\sum_{k=1}^{\ell} E\left[X_{1 / n}^{2}\right]=E\left[X_{\ell / n}^{2}\right] .
$$

Since $E\left[X_{1 / n}^{2}\right]=E\left[X_{1}^{2}\right] / n$, we can conclude that $E\left[X_{\ell / n}^{2}\right]=\ell E\left[X_{1}^{2}\right] / n$. Therefore, we have proved that $E\left[X_{t}^{2}\right]=t E\left[X_{1}^{2}\right]$ for all $t \in \mathbb{Q}_{+}$. We can conclude the proof using the fact that $\left(E\left[X_{t}^{2}\right]\right)_{t \geq 0}$ is increasing. Precisely,

$$
\begin{aligned}
t E\left[X_{1}^{2}\right]=\sup _{s \in \mathbb{Q}_{+}, s<t} s E\left[X_{1}^{2}\right] & =\sup _{s \in \mathbb{Q}_{+}, s<t} E\left[X_{s}^{2}\right] \\
& \leq E\left[X_{t}^{2}\right] \leq \inf _{s \in \mathbb{Q}_{+}, s>t} E\left[X_{s}^{2}\right]=t E\left[X_{1}^{2}\right],
\end{aligned}
$$

and thus conclude that $E\left[X_{t}^{2}\right]=t E\left[X_{1}^{2}\right]$.
(d) We first have to show that $\left(t E\left[X_{1}^{2}\right]\right)_{t \geq 0}$ is an increasing, predictable process null at 0 . Since $E\left[X_{1}^{2}\right] \geq 0$, the process is clearly increasing. Moreover, it is deterministic and continuous, thus it is predictable and it is clearly null at 0 . It only remains to show that the process $\left(X_{t}^{2}-t E\left[X_{1}^{2}\right]\right)_{t \geq 0}$ is a martingale. Since the increments are independent and stationary we can compute

$$
\begin{aligned}
E\left[X_{t}^{2}-X_{s}^{2} \mid \mathcal{F}_{s}\right]=E\left[\left(X_{t}-X_{s}\right)^{2} \mid \mathcal{F}_{s}\right] & =E\left[\left(X_{t}-X_{s}\right)^{2}\right] \\
& =E\left[X_{t-s}^{2}\right] \\
& =(t-s) E\left[X_{1}^{2}\right] \\
& =t E\left[X_{1}^{2}\right]-s E\left[X_{1}^{2}\right] P \text {-a.s. for all } t>s \geq 0,
\end{aligned}
$$

where the fourth equality uses our result from (c). Rearranging the above, we obtain that

$$
E\left[X_{t}^{2}-t E\left[X_{1}^{2}\right]-\left(X_{s}^{2}-s E\left[X_{1}^{2}\right]\right) \mid \mathcal{F}_{s}\right]=0 P \text {-a.s. }
$$

which is the martingale property for $\left(X_{t}^{2}-t E\left[X_{1}^{2}\right]\right)_{t \geq 0}$.

Exercise 9.2 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where the filtration \mathbb{F} satisfies the usual conditions.
(a) Let X be an adapted process and τ a stopping time. Show that if X^{τ} is a martingale, then so is X^{σ} for any stopping time σ with $\sigma \leq \tau P$-a.s.
Hint: You may use the result that a stopped martingale is again a martingale.
(b) Let M and N be two local martingales. Show that the linear combination $\alpha M+\beta N$ for any $\alpha, \beta \in \mathbb{R}$ is a local martingale.
Hint: You may use your result in (a).
(c) We say that two Brownian motions W^{1} and W^{2} on $(\Omega, \mathcal{F}, \mathbb{F}, P)$ are correlated with instantaneous correlation $\rho \in[-1,1]$ if, for $s \leq t$, the increments $W_{t}^{1}-W_{s}^{1}$ and $W_{t}^{2}-W_{s}^{2}$ are independent of \mathcal{F}_{s} and jointly normally distributed with $\mathcal{N}(\mu, \Sigma)$, where

$$
\mu=\binom{0}{0} \text { and } \Sigma=\left(\begin{array}{cc}
t-s & \rho(t-s) \\
\rho(t-s) & t-s
\end{array}\right)
$$

Show that $\left[W^{1}, W^{2}\right]_{t}=\rho t P$-a.s.
Hint: You may find $\lambda \in \mathbb{R}$ such that $B^{\lambda}:=\lambda\left(W^{1}+W^{2}\right)$ is a Brownian motion. Then, compute $\left[B^{\lambda}\right]$ in terms of W^{1} and W^{2}, using the properties of $[\cdot, \cdot]$.

Solution 9.2

(a) For notational clarity, we define $Y:=X^{\tau}$. Note that since $\sigma \leq \tau P$-a.s. by assumption, we can write for all $t \geq 0$ that

$$
X_{t}^{\sigma}=X_{t \wedge \sigma}=X_{t \wedge \tau \wedge \sigma}=X_{t \wedge \sigma}^{\tau}=Y_{t}^{\sigma} P \text {-a.s. }
$$

But Y is a martingale by assumption; so Y^{σ}, the stopped martingale, is a martingale as well. The above equation then directly implies the same for X^{σ}.
(b) Let $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ and $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ be two localizing sequences for M and N, respectively. Let us fix $n \in \mathbb{N}$, and define $\theta_{n}:=\min \left(\tau_{n}, \sigma_{n}\right)$. It follows that $\theta_{n} \leq \tau_{n} P$-a.s. as well as $\theta_{n} \leq \sigma_{n} P$-a.s., and thus our result from (a) implies that both $M^{\theta_{n}}$ and $N^{\theta_{n}}$ are martingales if θ_{n} is a stopping time. We can conclude that

$$
\alpha M^{\theta_{n}}+\beta N^{\theta_{n}}=(\alpha M+\beta N)^{\theta_{n}} P \text {-a.s. }
$$

is a martingale.
What thus remains to be shown is that $\left(\theta_{n}\right)_{n \in \mathbb{N}}$ is indeed a sequence of stopping times with $\theta_{n} \nearrow \infty P$-a.s. The fact that $\theta_{n} \nearrow \infty P$-a.s. is trivial since we have that both $\tau_{n} \nearrow \infty$ and $\sigma \nearrow \infty P$-a.s. In order to show that θ_{n} is a stopping time for each $n \in \mathbb{N}$, we note that

$$
\left\{\theta_{n} \leq t\right\}=\left\{\min \left(\tau_{n}, \sigma_{n}\right) \leq t\right\}=\left\{\tau_{n} \leq t\right\} \cup\left\{\sigma_{n} \leq t\right\} \in \mathcal{F}_{t},
$$

since $\left\{\tau_{n} \leq t\right\} \in \mathcal{F}_{t}$ and $\left\{\sigma_{n} \leq t\right\} \in \mathcal{F}_{t}$ because τ_{n} and σ_{n} are stopping times. This shows that $\left(\theta_{n}\right)_{n \in \mathbb{N}}$ is a localizing sequence for $\alpha M+\beta N$ and concludes the proof.
(c) Let us define $B^{\lambda}:=\lambda\left(W^{1}+W^{2}\right)$, for $\lambda \in \mathbb{R}$. The process B^{λ} is adapted and such that $B_{0}^{\lambda}=0 P$-a.s., and its trajectories are continuous for P-a.e. $\omega \in \Omega$. Therefore, for it to be a Brownian motion, we need to check that $B_{t}^{\lambda}-B_{s}^{\lambda}$ is independent of \mathcal{F}_{s} and has a normal distribution $\mathcal{N}(0, t-s)$, for any $0 \leq s \leq t$. We have that

$$
\begin{aligned}
B_{t}^{\lambda}-B_{s}^{\lambda}=\lambda\left(W_{t}^{1}-W_{s}^{1}\right)+\lambda\left(W_{t}^{2}-W_{s}^{2}\right) & \sim \mathcal{N}\left(0, \lambda^{2}(2(t-s)+2 \rho(t-s))\right) \\
& \sim \mathcal{N}\left(0, \lambda^{2}(t-s)(2+2 \rho)\right)
\end{aligned}
$$

because W^{1} and W^{2} are Brownian motions such that $\left(W_{t}^{1}-W_{s}^{1}, W_{t}^{2}-W_{s}^{2}\right) \sim$ $\mathcal{N}(\mu, \Sigma)$ with

$$
\mu=\binom{0}{0} \text { and } \Sigma=\left(\begin{array}{cc}
t-s & \rho(t-s) \\
\rho(t-s) & t-s
\end{array}\right)
$$

and we know that linear transformations of normal random vectors are normally distributed. We can deduce that by setting $\lambda^{2}=1 /(2+2 \rho), B^{\lambda}$ is a Brownian motion.
As suggested in the hint, let us now compute the quadratic variation of B^{λ} using that $\left[B^{\lambda}\right]=\left[B^{\lambda}, B^{\lambda}\right]$ and the bilinearity and symmetry of $[\cdot, \cdot]$. We have that

$$
\begin{aligned}
{\left[B^{\lambda}\right]_{t} } & =\left[\lambda\left(W^{1}+W^{2}\right), \lambda\left(W^{1}+W^{2}\right)\right]_{t}=\lambda^{2}\left[W^{1}+W^{2}, W^{1}+W^{2}\right]_{t} \\
& =\lambda^{2}\left(\left[W^{1}, W^{1}+W^{2}\right]_{t}+\left[W^{2}, W^{1}+W^{2}\right]_{t}\right) \\
& =\lambda^{2}\left(\left[W^{1}, W^{1}\right]_{t}+\left[W^{1}, W^{2}\right]_{t}+\left[W^{2}, W^{1}\right]_{t}+\left[W^{2}, W^{2}\right]_{t}\right) \\
& =\lambda^{2}\left(\left[W^{1}\right]_{t}+2\left[W^{1}, W^{2}\right]_{t}+\left[W^{2}\right]_{t}\right) \\
& =2 \lambda^{2}\left(\left[W^{1}, W^{2}\right]_{t}+t\right),
\end{aligned}
$$

where the last equality follows from the fact that W^{1} and W^{2} are Brownian motions, and we thus have that $\left[W^{1}\right]_{t}=t$ and $\left[W^{2}\right]_{t}=t P$-a.s. We can thus rearrange the above terms to obtain that

$$
\left[W^{1}, W^{2}\right]_{t}=\frac{1}{2 \lambda^{2}}\left[B^{\lambda}\right]_{t}-t
$$

But the choice $\lambda^{2}=1 /(2+2 \rho)$ leads to B^{λ} being a Brownian motion, in which case $\left[B^{\lambda}\right]_{t}=t P$-a.s. We conclude that

$$
\left[W^{1}, W^{2}\right]_{t}=t\left(\frac{1}{2 \lambda^{2}}-1\right)=t\left(\frac{2+2 \rho}{2}-1\right)=\rho t P \text {-a.s. for all } t \geq 0
$$

Exercise 9.3 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space, where the filtration \mathbb{F} satisfies the usual conditions. Consider $W=\left(W_{t}\right)_{t \geq 0}$ and $B=\left(B_{t}\right)_{t \geq 0}$ two independent Brownian motions.
(a) Show that $B W=\left(B_{t} W_{t}\right)_{t \geq 0}$ is a martingale.
(b) Compute the mean of $\int_{0}^{t} W_{s} d s$ and prove that its variance is $t^{3} / 3$, for $t>0$. Hint: You may use Fubini's theorem, and rewrite $\left(\int_{0}^{t} W_{s} d s\right)^{2}=\int_{0}^{t} \int_{0}^{t} W_{s} W_{u} d s d u$.

Solution 9.3

(a) We have that $B W$ is adapted since so are B and W. Moreover, the product $B W$ is integrable since $E\left[\left|B_{t} W_{t}\right|\right]=E\left[\left|B_{t}\right|\right] E\left[\left|W_{t}\right|\right]<\infty$, for $t \geq 0$, because B and W are independent and integrable. To conclude that $B W$ is a martingale, we only need to check the martingale property:

$$
\begin{aligned}
E\left[B_{t} W_{t} \mid \mathcal{F}_{s}\right] & =E\left[\left(B_{t}-B_{s}+B_{s}\right)\left(W_{t}-W_{s}+W_{s}\right) \mid \mathcal{F}_{s}\right] \\
& =E\left[\left(B_{t}-B_{s}\right)\left(W_{t}-W_{s}\right)\right]+B_{s} W_{s} \\
& =B_{s} W_{s} P \text {-a.s., for } t \geq s \geq 0,
\end{aligned}
$$

where the last equality follows from the independence of the increments of W and B. This concludes the proof.
(b) Let us fix $t>0$. By Fubini's theorem,

$$
E\left[\int_{0}^{t} W_{s} d s\right]=\int_{0}^{t} E\left[W_{s}\right] d s=0
$$

and

$$
\begin{aligned}
E\left[\left(\int_{0}^{t} W_{s} d s\right)^{2}\right] & =E\left[\left(\int_{0}^{t} W_{s} d s\right)\left(\int_{0}^{t} W_{u} d u\right)\right] \\
& =E\left[\int_{0}^{t} \int_{0}^{t} W_{s} W_{u} d s d u\right] \\
& =\int_{0}^{t} \int_{0}^{t} E\left[W_{s} W_{u}\right] d s d u \\
& =\int_{0}^{t} \int_{0}^{t}(s \wedge u) d s d u \\
& =\int_{0}^{t}\left(\frac{u^{2}}{2}+(t-u) u\right) d u \\
& =\int_{0}^{t}\left(-\frac{u^{2}}{2}+t u\right) d u=-\frac{t^{3}}{6}+\frac{t^{3}}{2}=\frac{t^{3}}{3}
\end{aligned}
$$

The fourth equality follows from the fact that for $s \geq u$, we have

$$
\begin{aligned}
E\left[W_{s} W_{u}\right] & =E\left[\left(W_{s}-W_{u}+W_{u}\right) W_{u}\right]=E\left[\left(W_{s}-W_{u}\right) W_{u}\right]+E\left[W_{u}^{2}\right] \\
& =E\left[W_{s}-W_{u}\right] E\left[W_{u}\right]+u=u
\end{aligned}
$$

and similarly for $s<u, E\left[W_{s} W_{u}\right]=s$.

