Mathematical Foundations for Finance Exercise Sheet 9

Please hand in your solutions by 12:00 on Wednesday, November 29 via the course homepage.

Exercise 9.1 On a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, consider an adapted process $X=\left(X_{t}\right)_{t \geq 0}$ null at 0 . Assume that X is integrable and has independent and stationary increments, i.e. $X_{t}-X_{s}$ is independent of \mathcal{F}_{s} and has the same distribution as X_{t-s} for all $t>s \geq 0$.
(a) Under which conditions on $\left(E\left[X_{t}\right]\right)_{t \geq 0}$ is X a martingale? And a supermartingale? A submartingale?
(b) From this point onward, let us assume that X is a square-integrable martingale. Prove that

$$
E\left[X_{t}^{2}\right]+E\left[X_{s}^{2}\right]=E\left[X_{t+s}^{2}\right] \text { for any } t, s \geq 0
$$

and deduce that $\left(E\left[X_{t}^{2}\right]\right)_{t \geq 0}$ is an increasing process.
Hint: You may use Exercise 8.1(a).
(c) Deduce from (b) that $E\left[X_{t}^{2}\right]=t E\left[X_{1}^{2}\right]$ for all $t \geq 0$.

Hint: Prove the result first for $t=1 / n$ for all $n \in \mathbb{N}$. Then, deduce that it holds true for all $t \in \mathbb{Q}_{+}$and use monotonicity to conclude.
(d) Prove that $\langle X\rangle_{t}=t E\left[X_{1}^{2}\right]$ for all $t \geq 0$.

Hint: You may use your result from (c).

Exercise 9.2 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where the filtration \mathbb{F} satisfies the usual conditions.
(a) Let X be an adapted process and τ a stopping time. Show that if X^{τ} is a martingale, then so is X^{σ} for any stopping time σ with $\sigma \leq \tau P$-a.s.
Hint: You may use the result that a stopped martingale is again a martingale.
(b) Let M and N be two local martingales. Show that the linear combination $\alpha M+\beta N$ for any $\alpha, \beta \in \mathbb{R}$ is a local martingale.
Hint: You may use your result in (a).
(c) We say that two Brownian motions W^{1} and W^{2} on $(\Omega, \mathcal{F}, \mathbb{F}, P)$ are correlated with instantaneous correlation $\rho \in[-1,1]$ if, for $s \leq t$, the increments $W_{t}^{1}-W_{s}^{1}$
and $W_{t}^{2}-W_{s}^{2}$ are independent of \mathcal{F}_{s} and jointly normally distributed with $\mathcal{N}(\mu, \Sigma)$, where

$$
\mu=\binom{0}{0} \text { and } \Sigma=\left(\begin{array}{cc}
t-s & \rho(t-s) \\
\rho(t-s) & t-s
\end{array}\right)
$$

Show that $\left[W^{1}, W^{2}\right]_{t}=\rho t P$-a.s.
Hint: You may find $\lambda \in \mathbb{R}$ such that $B^{\lambda}:=\lambda\left(W^{1}+W^{2}\right)$ is a Brownian motion. Then, compute $\left[B^{\lambda}\right]$ in terms of W^{1} and W^{2}, using the properties of $[\cdot, \cdot]$.

Exercise 9.3 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space, where the filtration \mathbb{F} satisfies the usual conditions. Consider $W=\left(W_{t}\right)_{t \geq 0}$ and $B=\left(B_{t}\right)_{t \geq 0}$ two independent Brownian motions.
(a) Show that $B W=\left(B_{t} W_{t}\right)_{t \geq 0}$ is a martingale.
(b) Compute the mean of $\int_{0}^{t} W_{s} d s$ and prove that its variance is $t^{3} / 3$, for $t>0$. Hint: You may use Fubini's theorem, and rewrite $\left(\int_{0}^{t} W_{s} d s\right)^{2}=\int_{0}^{t} \int_{0}^{t} W_{s} W_{u} d s d u$.

