Exam simulation

Mathematical Foundations for Finance

Please hand in your solutions by 12:00 on Sunday, December 17 via the course homepage.

Question 1

For each of the following 12 subquestions, there is exactly one correct answer. For each correct answer you get 1 point, for each wrong answer you get -1/2 points, and for no answer you get 0 points. You get at least zero points for the whole exercise.

Throughout subquestions (a) to (f), let $(\Omega, \mathcal{F}, \mathbb{F}, P, \widetilde{S}^0, \widetilde{S})$ or shortly $(\widetilde{S}^0, \widetilde{S})$ be an undiscounted financial market in discrete time with a finite time horizon $T \in \mathbb{N}$. Assume that the filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,\dots,T}$ is generated by \widetilde{S} , and $\widetilde{S}_0 := s_0 > 0$. Furthermore, suppose that $\widetilde{S}_k^0 := (1+r)^k$ for $k = 0, 1, \dots, T$, where r > -1. The prices discounted by \widetilde{S}^0 are denoted by S^0 and S, respectively.

(a) Let T = 1. Suppose that $S = (S^1, S^2)$ evolves as

$$(S_0^1, S_0^2) = (6, 2), \quad (S_1^1, S_1^2) = \begin{cases} (9, 3) & \text{with probability } p_1, \\ (6, 2) & \text{with probability } p_2, \\ (3, 1) & \text{with probability } p_3, \end{cases}$$

where $p_j > 0$ for j = 1, 2, 3 and $p_1 + p_2 + p_3 = 1$. Which of the following assertions is true?

- (1) The market (S^0, S^1, S^2) is not arbitrage-free.
- (2) The market (S^0, S^1, S^2) is arbitrage-free and complete.
- (3) The market (S^0, S^1, S^2) is arbitrage-free and incomplete.
- (b) Let T = 1. Suppose that $S_0 = 1$ and $S_1 = \exp(X)$, where X is normally distributed with mean $\mu = -0.2$ and variance $\sigma^2 = 0.5$. Which of the following assertions is true?
 - (1) S is a (P, \mathbb{F}) -submartingale.
 - (2) S is a (P, \mathbb{F}) -supermartingale.
 - (3) The market (S^0, S) is not arbitrage-free.
- (c) Let T = 1. Assume that (S^0, S) is arbitrage-free and incomplete and let \widetilde{C} denote an undiscounted payoff at time T = 1. Which of the following assertions is true?
 - (1) If \widetilde{C} is attainable, then the market is complete.
 - (2) \widetilde{C} is not attainable.
 - (3) C is attainable if and only if the undiscounted payoff $\tilde{C} + \tilde{S}_1$ is attainable.
- (d) Assume that (S^0, S) is arbitrage-free and incomplete and let H^1 and H^2 be two discounted payoffs such that H^1 is attainable and H^2 is not attainable. Which of the following assertions is true?
 - (1) The discounted payoff $H^1 + H^2$ is never attainable.

- (2) The discounted payoff $H^1 + H^2$ is always attainable.
- (3) It cannot be said in general if the discounted payoff $H^1 + H^2$ is attainable or not.
- (e) Let σ and τ be two \mathbb{F} -stopping times satisfying $\sigma \leq \tau$, *P*-a.s. Which of the following assertions is true?
 - (1) a random time $\tilde{\sigma}$ satisfying $\sigma \leq \tilde{\sigma} \leq \tau$, *P*-a.s., is an \mathbb{F} -stopping time.
 - (2) $\tau \sigma$ is an \mathbb{F} -stopping time.
 - (3) $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$.
- (f) Assume that \widetilde{S} is a (P, \mathbb{F}) -local submartingale. Which of the following assertions is true?
 - (1) The stopped process $(\widetilde{S}_{k\wedge\tau})_{k=0,1,\dots,T}$ is a (P,\mathbb{F}) -submartingale for every \mathbb{F} -stopping time τ .
 - (2) The stochastic integral process $\varphi \bullet \widetilde{S}$ is a (P, \mathbb{F}) -local submartingale for every bounded \mathbb{F} -predictable process φ .
 - (3) The process \widetilde{S} is a (P, \mathbb{F}) -submartingale if it is bounded from above.

Throughout subquestions (g) to (l), W denotes a Brownian motion on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where the filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ satisfies the usual hypotheses.

- (g) Denote by $X = (X_t)_{t>0}$ the stochastic exponential $\mathcal{E}(W) = (\mathcal{E}(W)_t)_{t>0}$. Which of the following assertions is true?
 - (1) $X_t^2 = \exp(-2t)\mathcal{E}(2W)_t$ for any $t \ge 0$, *P*-a.s. (2) $X_t^2 = \exp(t)\mathcal{E}(2W)_t$ for any $t \ge 0$, *P*-a.s. (3) $X_t^2 = \exp(2t)\mathcal{E}(2W)_t$ for any $t \ge 0$, *P*-a.s.
- (h) Which of the following processes is **not** a (P, \mathbb{F}) -martingale?
 - (1) $(\exp(2t 2W_t)_t)_{t>0}$.
 - (2) $(\exp(-2t 2W_t)_t)_{t>0}$.
 - (3) $(\exp(-2t+2W_t)_t)_{t>0}$.
- (i) Which of the following assertions is true?
 - (1) A (P, \mathbb{F}) -local martingale is always a (P, \mathbb{F}) -supermartingale.
 - (2) A (P, \mathbb{F}) -local martingale is always a (P, \mathbb{F}) -submartingale.
 - (3) A (P, \mathbb{F}) -supermartingale which is also a (P, \mathbb{F}) -submartingale is always a (P, \mathbb{F}) -local martingale.
- (i) Let M be a (P, \mathbb{F}) -locally square-integrable local martingale null at 0. Which of the following assertions is true?
 - (1) If H is F-predictable, bounded and positive, then $H \bullet M$ is a (P, F)-supermartingale.
 - (2) If $|M_t| < \infty$, *P*-a.s., for all t > 0, then *M* is a (P, \mathbb{F}) -martingale.
 - (3) If $|M_t| \leq L$, P-a.s., for all $t \geq 0$, for some P-integrable random variable L, then M is a (P, \mathbb{F}) -martingale.
- (k) Which of the following statements is **not** true?
 - (1) The sample paths of X with $X_t := \int_0^t W_s ds$, for $t \ge 0$, are P-a.s. of finite variation.
 - (2) The sample paths of [M] are P-a.s. of finite variation for any (P, \mathbb{F}) -martingale M.
 - (3) The sample paths of Y with $Y_t := \int_0^t s dW_s$, for $t \ge 0$, are P-a.s. of finite variation.
- (1) Let M be a (P, \mathbb{F}) -local martingale and A be a process whose sample paths are P-a.s. of finite variation. Which of the following statements is true?
 - (1) $H \bullet M$ is a (P, \mathbb{F}) -martingale, if H is bounded and \mathbb{F} -predictable.
 - (2) $H \bullet A$ has finite variation, if H is bounded and \mathbb{F} -predictable.
 - (3) $H \bullet M$ is a (P, \mathbb{F}) -martingale, if M is a (P, \mathbb{F}) -martingale and H is bounded and **F**-predictable.

Consider a financial market $(\widetilde{S}^0, \widetilde{S})$ consisting of a bank account and one stock. The movements of the discounted stock price S are described by the following tree, where the numbers beside the branches denote transition probabilities.

More precisely, let (Ω, \mathcal{F}, P) be the probability space with $\Omega := \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2)\},\$ $\mathcal{F} = 2^{\Omega}$ and the probability measure P defined by $P[\{(x_1, x_2)\}] := p_{x_1} p_{x_1, x_2}$, where

$$p_1 = p_2 = \frac{1}{2}$$
 and $p_{1,1} = p_{1,2} = \frac{1}{4}$, $p_{1,3} = \frac{1}{2}$, $p_{2,1} = \frac{1}{3}$, $p_{2,2} = \frac{2}{3}$.

The discounted bank account process $(S_k^0)_{k=0,1,2}$ is given by $S_k^0 = 1$, for k = 0, 1, 2, and the discounted stock price process $(S_k)_{k=0,1,2}$ by

 $S_0 = 100$ $S_1((1,j)) = 50, \quad S_1((2,\ell)) = 200, \quad j = 1, 2, 3, \ \ell = 1, 2.$ $S_2((1,1)) = 30, \quad S_2((1,2)) = 50, \quad S_2((1,3)) = 70, \quad S_2((2,1)) = 100, \quad S_2((2,2)) = 300.$ The filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$ is given by $\mathcal{F}_0 := \{\emptyset, \Omega\}, \mathcal{F}_1 := \sigma(S_1) \text{ and } \mathcal{F}_2 := \sigma(S_1, S_2) = \mathcal{F}.$

- (a) Show that the market is free of arbitrage and explicitly describe the set $\mathbb{P}_e(S)$ of all equivalent martingale measures for S.
- (b) For $K \in (30, 300)$, let $C^K = (S_2 K)^+$ denote the discounted payoff of an European call option on S with strike K and maturity T = 2. For which values of K is this option attainable? Justify your answer.
- (c) Assume that the option C^{80} is traded at a price of 50 at time 0. Show that the extended market $(S^0, S, (50, C^{80}))$ admits arbitrage.

Hint: Argue whether one should buy the option or sell it short.

Let (Ω, \mathcal{F}, P) be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,\dots,T}$, where $T \in \mathbb{N}$. We set $\mathcal{F}_0 := \{\emptyset, \Omega\}$, and assume that $\mathcal{F}_T = \mathcal{F}$. Let $\mathcal{D} > 0$ be a random variable on (Ω, \mathcal{F}) with $E^P[\mathcal{D}] = 1$. We introduce a probability measure Q on (Ω, \mathcal{F}) such that

$$Q[A] := E^P[\mathcal{D}\mathbf{1}_A], \text{ for } A \in \mathcal{F}.$$

We define the process $Z = (Z_k)_{k=0,1,\dots,T}$ by $Z_k := E^P[\mathcal{D}|\mathcal{F}_k].$

(a) Let X_n be a simple random variable of the form

$$X_n := \sum_{i=1}^n x_{i,n} \mathbf{1}_{A_{i,n}} \tag{1}$$

for some constants $x_{1,n}, \ldots, x_{n,n} \ge 0$ and some sets $A_{1,n}, \ldots, A_{n,n} \in \mathcal{F}$. Show that $E^Q[X_n] = E^P[\mathcal{D}X_n].$

- (b) Show that $E^Q[X] = E^P[\mathcal{D}X]$ for any random variable $X \ge 0$. *Hint:* Without giving a proof, assume that there exists a nondecreasing sequence $(X_n)_{n \in \mathbb{N}}$ of simple random variables described by (1) such that $\lim_{n\to\infty} X_n = X$, *P*-a.s.
- (c) Infer from (b) that $E^Q[Y] = E^P[Z_k Y]$ for any \mathcal{F}_k -measurable random variable $Y \ge 0$.

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \geq 0}, P)$ be a filtered probability space which satisfies the usual conditions. Fix some $\alpha > 0$. Assume that W is a (P, \mathbb{F}) -Brownian motion, and X is a (P, \mathbb{F}) -semimartingale satisfying

$$\begin{cases} dX_t = \alpha X_t dt + dW_t, \ P\text{-a.s.} \\ X_0 = 0, \ P\text{-a.s.} \end{cases}$$

- (a) Show that $(e^{-\alpha t}X_t)_{t\geq 0}$ is a (P,\mathbb{F}) -local martingale. Write X as a stochastic integral.
- (b) Fix some T > 0. Prove that $(e^{-\alpha t}X_t)_{t \in [0,T]}$ is a (P, \mathbb{F}) -martingale in \mathcal{M}_0^2 . Deduce $E[X_T]$ and $Var(X_T)$.
- (c) Define the process $Z = (Z_t)_{t \ge 0}$, where

$$Z_t := \exp\left\{-\alpha \int_0^t X_s \mathrm{d}W_s - \frac{\alpha^2}{2} \int_0^t X_s^2 \mathrm{d}s\right\}.$$

Prove that Z is a (P, \mathbb{F}) -local martingale.

Let T > 0 denote a fixed time horizon and $W = (W_t)_{t \in [0,T]}$ be a Brownian motion on some probability space (Ω, \mathcal{F}, P) . Let $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ be the filtration generated by W satisfying the usual conditions. Consider the Black–Scholes model with time-dependent interest rate r, i.e., the undiscounted bank account price process $\widetilde{S}^0 = (\widetilde{S}_t^0)_{t \in [0,T]}$ and the undiscounted stock price process $\widetilde{S} = (\widetilde{S}_t)_{t \in [0,T]}$ satisfy the SDEs

$$\frac{\mathrm{d}\widetilde{S}_t}{\widetilde{S}_t} = \mu_1 \mathrm{d}t + \sigma_1 \mathrm{d}W_t, \quad \widetilde{S}_0 = 1, \ P\text{-a.s.}$$
$$\frac{\mathrm{d}\widetilde{S}_t^0}{\widetilde{S}_t^0} = r(t)\mathrm{d}t, \quad \widetilde{S}_0^0 = 1, \ P\text{-a.s.}$$

Here, $\mu_1 \in \mathbb{R}$ and $\sigma_1 > 0$. The discount rate $r : [0, T] \to \mathbb{R}$ is of the form $r(t) = \sum_{i=0}^{n-1} d_i \mathbf{1}_{(t_i, t_{i+1}]}(t)$, for some constants $d_i \in \mathbb{R}$ and a partition $0 = t_0 < \cdots < t_n = T$.

(a) Let $\lambda : [0,T] \to \mathbb{R}$ be in $L^2_{loc}(W)$. Show that the process $Z = (Z_t)_{t \in [0,T]}$ defined by

$$Z_t := \mathcal{E}\left(\int_0^{\cdot} \lambda(s) \mathrm{d}W_s\right)_t$$

is a (P, \mathbb{F}) -martingale.

- (b) Find the density process Z of a probability measure $Q \approx P$ on \mathcal{F}_T such that the discounted price process $S := \tilde{S}/\tilde{S}^0$ is a (Q, \mathbb{F}) -martingale. Compute the dynamics of S under the measure Q.
- (c) Hedge the discounted power option for p > 0, i.e., find (V_0, ϑ) such that

$$H := \frac{\left(\widetilde{S}_T\right)^p}{\widetilde{S}_T^0} = V_0 + \int_0^T \vartheta_t \mathrm{d}S_t, \ P\text{-a.s.}$$