Exam simulation

Mathematical Foundations for Finance

Solutions

Solution 1

The correct answers are:
(a) (3)
(b) (1)
(c) (3)
(d) (1)
(e) (3)
(f) (3)
(g) (2)
(h) (1)
(i) (3)
(j) (3)
(k) (3)
(l) (2)

Solution 2

(a) Any probability measure Q equivalent to P on \mathcal{F}_{2} can be described by

$$
Q\left[\left\{\left(x_{1}, x_{2}\right)\right\}\right]:=q_{x_{1}} q_{x_{1}, x_{2}},
$$

where $q_{x_{1}}, q_{x_{1}, x_{2}} \in(0,1)$ and $\sum_{x_{1} \in\{1,2\}} q_{x_{1}}=1, \sum_{x_{2} \in\{1,2,3\}} q_{1, x_{2}}=1, \sum_{x_{2} \in\{1,2\}} q_{2, x_{2}}=1$. Next, since \mathcal{F}_{0} is trivial and $\mathcal{F}_{1}=\sigma\left(S_{1}^{1}\right)$ (and S_{1}^{1} only takes two values), S^{1} is a $Q-$ martingale if and only if

$$
\mathbb{E}^{Q}\left[S_{1}\right]=100, \quad \mathbb{E}^{Q}\left[S_{2} \mid S_{1}=200\right]=200 \quad \text { and } \quad \mathbb{E}^{Q}\left[S_{2} \mid S_{1}=50\right]=50
$$

Thus, $q_{1}, q_{2}, q_{1,1}, q_{1,2}, q_{1,3}, q_{2,1}, q_{2,2} \in(0,1)$ define an equivalent martingale measure for S if and only if they satisfy the three systems of equations

$$
\left.\begin{array}{rl}
\begin{cases}q_{1}+q_{2} \\
50 q_{1}+200 q_{2} & =1\end{cases} \\
\begin{cases}q_{2,1}+q_{2,2} \\
300 q_{2,1}+100 q_{2,2}\end{cases} & =1
\end{array}\right\}
$$

It is straightforward to check that the solution to (I) and (II) are given by

$$
q_{1}=\frac{2}{3}, \quad q_{2}=\frac{1}{3} \quad \text { and } \quad q_{2,1}=\frac{1}{2}, \quad q_{2,2}=\frac{1}{2}
$$

Moreover, (III) is equivalent to

$$
\begin{cases}q_{1,1}+q_{1,2}+q_{1,3} & =1 \tag{III'}\\ -q_{1,1}+q_{1,3} & =0\end{cases}
$$

Recalling that $q_{1,1}, q_{1,2}, q_{1,3} \in(0,1)$ shows that the solution to (III') is given by

$$
q_{1,1}=\rho, \quad q_{1,2}=1-2 \rho, \quad q_{1,3}=\rho, \text { where } \rho \in(0,1 / 2)
$$

Thus, $\mathbb{P}_{e}\left(S^{1}\right)=\left\{Q^{\rho}: \rho \in(0,1 / 2)\right\}$, where $Q^{\rho}\left[\left\{\left(x_{1}, x_{2}\right)\right\}\right]=q_{x_{1}}^{\rho} q_{x_{1}, x_{2}}^{\rho}$ with

$$
q_{1}^{\rho}=\frac{2}{3}, \quad q_{2}^{\rho}=\frac{1}{3}, \quad q_{1,1}^{\rho}=\rho, \quad q_{1,2}^{\rho}=1-2 \rho, \quad q_{1,3}^{\rho}=\rho \quad \text { and } \quad q_{2,1}^{\rho}=\frac{1}{2}, \quad q_{2,2}^{\rho}=\frac{1}{2}
$$

(b) The call option is attainable for $K \in[70,300)$ and not attainable for $K \in(30,70]$. Indeed, fix $\rho \in(0,1 / 2)$. Then,

$$
\mathbb{E}^{Q^{\rho}}\left[C^{K}\right]= \begin{cases}\frac{1}{3} \times \frac{1}{2}(300-K)=\frac{300-K}{6}, & K \in[100,300), \\ \frac{300-K}{3}+\frac{1}{3} \times \frac{1}{2}(100-K)=\frac{200-K}{3}, & K \in[70,100), \\ \frac{200-K}{3}+\frac{2}{3} \rho(70-K)=\frac{200-K}{3}+\rho \frac{140-2 K}{3}, & K \in[50,70), \\ \frac{200-K}{3}+\rho \frac{140-2 K}{3}+\frac{2}{3}(1-2 \rho)(50-K)=100-K+\rho \frac{2 K-60}{3}, & K \in[30,50) .\end{cases}
$$

For $K \in[70,300)$, the mapping $(0,1 / 2) \ni \rho \mapsto \mathbb{E}^{Q^{\rho}}\left[C^{K}\right]$ is constant, and for $K \in[30,70)$ this mapping is non-constant. The claim follows from Theorem III.1.2 in the lecture notes.
(c) It follows from the solution of part (b) that the option C^{80} is attainable and that its arbitrage free price is given by $V_{0}^{C^{80}}=40$. Thus, the traded price of 50 at time 0 is too high. Therefore, we sell the option short and use the money to replicate it and put the rest in the bank account, i.e., we choose $\varphi=(0, \vartheta)$, where ϑ is such that $40+G_{2}(\vartheta)=C^{80}$. With this choice, we have

$$
G_{2}(\vartheta)-\left(C^{80}-50\right)=C^{80}-40-C^{80}+50=10>0 .
$$

Thus, this is an arbitrage opportunity.

Solution 3

(a) Let X_{n} be a simple random variable of the form

$$
X_{n}=\sum_{i=1}^{n} x_{i, n} \mathbf{1}_{A_{i, n}}
$$

for some constants $x_{1, n}, \ldots, x_{n, n} \geq 0$ and some sets $A_{1, n}, \ldots, A_{n, n} \in \mathcal{F}$. We compute that

$$
\begin{aligned}
E^{Q}\left[X_{n}\right] & =\sum_{i=1}^{n} x_{i, n} E^{Q}\left[\mathbf{1}_{A_{i, n}}\right]=\sum_{i=1}^{n} x_{i, n} Q\left[A_{i, n}\right]=\sum_{i=1}^{n} x_{i, n} E^{P}\left[\mathcal{D} \mathbf{1}_{A_{i, n}}\right] \\
& =E^{P}\left[\mathcal{D} \sum_{i=1}^{n} x_{i, n} \mathbf{1}_{A_{i, n}}\right]=E^{P}\left[\mathcal{D} X_{n}\right]
\end{aligned}
$$

(b) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a nondecreasing sequence of simple random variables such that $\lim _{n \rightarrow \infty} X_{n}=$ X, P-a.s. By the monotone convergence theorem, we immediately obtain that $E^{Q}\left[X_{n}\right] \uparrow$ $E^{Q}[X]$, as $n \rightarrow \infty$. But since $\mathcal{D}>0$, we also clearly have that $\mathcal{D} X_{n} \uparrow \mathcal{D} X, P$-a.s., and another application of the monotone convergence theorem thus gives that $E^{P}\left[\mathcal{D} X_{n}\right] \uparrow$ $E^{P}[\mathcal{D} X]$. Therefore, taking the limit on both sides of the result in (a) gives $E^{Q}[X]=$ $E^{P}[\mathcal{D} X]$ as desired.
(c) We compute

$$
E^{Q}[Y]=E^{P}[\mathcal{D} Y]=E^{P}\left[E^{P}\left[\mathcal{D} Y \mid \mathcal{F}_{k}\right]\right]=E^{P}\left[Y E^{P}\left[\mathcal{D} \mid \mathcal{F}_{k}\right]\right]=E^{P}\left[Z_{k} Y\right]
$$

The first equality uses the result in (b), the second one uses the tower property of the conditional expectation, the third one the \mathcal{F}_{k}-measurability and the nonnegativity of Y, and the last one the definition of Z_{k}.

Solution 4

(a) By applying Itô's formula, we get

$$
\mathrm{d}\left(e^{-\alpha t} X_{t}\right)=-\alpha e^{-\alpha t} X_{t} \mathrm{~d} t+e^{-\alpha t}\left(\alpha_{t} X_{t} \mathrm{~d} t+\mathrm{d} W_{t}\right)=e^{-\alpha t} \mathrm{~d} W_{t}, P-\text { a.s. }
$$

Or, equivalently,

$$
\begin{equation*}
e^{-\alpha t} X_{t}=\int_{0}^{t} e^{-\alpha s} \mathrm{~d} W_{s}, P-\text {-a.s., for any } t \geq 0 \tag{1}
\end{equation*}
$$

where we have used the fact that $X_{0}=0, P$-a.s. We conclude that $\left(e^{-\alpha t} X_{t}\right)_{t \geq 0}$ is a (P, \mathbb{F})-local martingale. Moreover, from (1) we get that

$$
X_{t}=e^{\alpha t} \int_{0}^{t} e^{-\alpha s} \mathrm{~d} W_{s}=\int_{0}^{t} e^{\alpha(t-s)} \mathrm{d} W_{s}, P \text {-a.s., for any } t \geq 0
$$

(b) Let us fix some $T>0$. It holds that

$$
E\left[\int_{0}^{T} e^{-2 \alpha s} \mathrm{~d}[W]_{s}\right]=E\left[\int_{0}^{T} e^{-2 \alpha s} \mathrm{~d} s\right]=\frac{1-e^{2 \alpha T}}{2 \alpha}<\infty
$$

The equation (1) implies that $\left(e^{-\alpha t} X_{t}\right)_{t \in[0, T]}$ is a (P, \mathbb{F})-martingale in \mathcal{M}_{0}^{2}. Moreover, from the martingale property, we deduce that

$$
E\left[X_{T}\right]=E\left[\int_{0}^{T} e^{\alpha(T-s)} \mathrm{d} W_{s}\right]=e^{\alpha T} E\left[\int_{0}^{T} e^{-\alpha s} \mathrm{~d} W_{s}\right]=0
$$

Itô's isometry implies that

$$
E\left[X_{T}^{2}\right]=E\left[\left(\int_{0}^{T} e^{\alpha(T-s)} \mathrm{d} W_{s}\right)^{2}\right]=E\left[\int_{0}^{T} e^{2 \alpha(t-s)} \mathrm{d} s\right]=\frac{e^{2 \alpha T}-1}{2 \alpha}
$$

We can conclude that $\operatorname{Var}\left(X_{T}\right)=E\left[X_{T}^{2}\right]$.
(c) It is straightforward to verify that $Z_{t}=\mathcal{E}\left(-\alpha \int_{0}^{*} X_{s} \mathrm{~d} W_{s}\right)_{t}$ for any $t \geq 0, P$-a.s. It follows that

$$
\mathrm{d} Z_{t}=Z_{t}\left(-\alpha X_{t} \mathrm{~d} W_{t}\right), P \text {-a.s. }
$$

We can conclude that Z is a (P, \mathbb{F})-local martingale.

Solution 5

(a) Let us define the process $Y=\left(Y_{t}\right)_{t \in[0, T]}$ by

$$
Y_{t}:=\int_{0}^{t} \lambda(s) \mathrm{d} W_{s}
$$

By the assumption that $\lambda \in L_{l o c}^{2}(W)$, we see that Y is a continuous (P, \mathbb{F})-local martingale. Moreover, we could recall the Novikov's condition that says that if $Y=\left(Y_{t}\right)_{t \in[0, T]}$ is a continuous (P, \mathbb{F})-local martingale with $Y_{0}=0$ and $E\left[e^{\frac{1}{2}\langle Y\rangle_{T}}\right]<\infty$, then $\mathcal{E}(Y)$ is a true (P, \mathbb{F})-martingale on $[0, T]$. In our case, we have that

$$
E\left[e^{\frac{1}{2}\langle Y\rangle_{T}}\right]=E\left[e^{\frac{1}{2} \int_{0}^{T} \lambda^{2}(s) d s}\right]=e^{\frac{1}{2} \int_{0}^{T} \lambda^{2}(s) d s}<\infty
$$

so the result follows.
(b) We first compute the P-dynamics of the discounted price process $S=\widetilde{S} / \widetilde{S}^{0}$. Direct application of Itô's formula with the C^{2} function $\mathbb{R}_{++}^{2} \ni(x, y) \mapsto x / y$ yields

$$
\begin{equation*}
\frac{\mathrm{d} S_{t}}{S_{t}}=\left(\mu_{1}-r(t)\right) \mathrm{d} t+\sigma_{1} \mathrm{~d} W_{t}, P-\text { a.s. } \tag{2}
\end{equation*}
$$

Define $\lambda:[0, T] \rightarrow \mathbb{R}$ by $\lambda(s):=\left(\mu_{1}-r(s)\right) / \sigma_{1}$ and the process $Z=\left(Z_{t}\right)_{t \in[0, T]}$ by

$$
Z_{t}:=\mathcal{E}\left(-\int_{0} \lambda(s) \mathrm{d} W_{s}\right)_{t}
$$

Since λ is left-continuous and bounded, (a) gives that Z is a positive (P, \mathbb{F})-martingale with $E\left[Z_{t}\right]=1$ for all $t \in[0, T]$, and thus the density process of some measure $Q \approx P$. Girsanov's theorem gives that

$$
W_{t}^{Q}:=W_{t}-\left\langle W,-\int_{0}^{.} \lambda(s) \mathrm{d} W_{s}\right\rangle_{t}=W_{t}+\int_{0}^{t} \lambda(s) \mathrm{d} s=W_{t}+\int_{0}^{t} \frac{\mu_{1}-r(s)}{\sigma_{1}} \mathrm{~d} s, P \text {-a.s. }
$$

is a (Q, \mathbb{F})-Brownian motion. By (2), the Q-dynamics of S is given by

$$
\frac{\mathrm{d} S_{t}}{S_{t}}=\left(\mu_{1}-r(t)\right) \mathrm{d} t-\left(\mu_{1}-r(t)\right) \mathrm{d} t+\sigma_{1} \mathrm{~d}\left(W_{t}+\int_{0}^{t} \frac{\mu_{1}-r(s)}{\sigma_{1}} \mathrm{~d} s\right)=\sigma_{1} \mathrm{~d} W_{t}^{Q}, P \text {-a.s. }
$$

In other words, $S=\mathcal{E}\left(\sigma_{1} W^{Q}\right)$, which is a (Q, \mathbb{F})-martingale.
(c) The arbitrage-free price at time t of the discounted payoff H is given by

$$
\begin{aligned}
V_{t} & =E^{Q}\left[\left.\frac{\left(\widetilde{S}_{T}\right)^{p}}{\widetilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right]=\left(\widetilde{S}_{T}^{0}\right)^{p-1} E^{Q}\left[\left(S_{T}^{1}\right)^{p} \mid \mathcal{F}_{t}\right]=\left(\widetilde{S}_{T}^{0}\right)^{p-1}\left(S_{t}\right)^{p} E^{Q}\left[\left.\left(\frac{S_{T}^{1}}{S_{t}^{1}}\right)^{p} \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{(p-1) \int_{0}^{T} r(s) \mathrm{d} s}\left(S_{t}\right)^{p} E^{Q}\left[e^{\left.\left.p \sigma_{1}\left(W_{T}^{Q}-W_{t}^{Q}\right)-p \frac{\sigma_{1}^{2}}{2}(T-t) \right\rvert\, \mathcal{F}_{t}\right]}\right. \\
& =e^{(p-1) \int_{0}^{T} r(s) d s-p \frac{\sigma_{1}^{2}}{2}(T-t)}\left(S_{t}\right)^{p} E^{Q}\left[e^{p \sigma_{1}\left(W_{T}^{Q}-W_{t}^{Q}\right)}\right] \\
& =e^{(p-1) \int_{0}^{T} r(s) \mathrm{d} s-p \frac{\sigma_{1}^{2}}{2}(T-t)}\left(S_{t}\right)^{p} e^{\frac{p^{2} \sigma_{1}^{2}(T-t)}{2}} \\
& =: v\left(t, S_{t}\right),
\end{aligned}
$$

where we have used that the increment $W_{T}^{Q}-W_{t}^{Q}$ is independent of \mathcal{F}_{t} under Q and normally distributed with mean 0 and variance $T-t$. Consequently, the delta of H is given by

$$
\vartheta_{t}=\left.\frac{\partial v}{\partial x}\right|_{(t, x)=\left(t, S_{t}\right)}=p e^{(p-1) \int_{0}^{T} r(s) \mathrm{d} s-p \frac{\sigma_{1}^{2}}{2}(T-t)}\left(S_{t}\right)^{p-1} e^{\frac{p^{2} \sigma_{1}^{2}(T-t)}{2}},
$$

and the price at time 0 is

$$
V_{0}=v\left(0, S_{0}\right)=e^{(p-1) \int_{0}^{T} r(s) \mathrm{d} s-p \frac{\sigma_{1}^{2}}{2} T} e^{\frac{p^{2} \sigma_{1}^{2} T}{2}} .
$$

