## Non-Life Insurance: Mathematics and Statistics

## Exercise sheet 1

## Exercise 1.1 Discrete Distribution

Suppose that $N$ follows a geometric distribution with parameter $p \in(0,1)$, i.e.

$$
\mathbb{P}[N=k]= \begin{cases}(1-p)^{k-1} p, & \text { if } k \in \mathbb{N}_{>0} \\ 0, & \text { else }\end{cases}
$$

(a) Show that the geometric distribution indeed defines a probability distribution on $\mathbb{R}$.
(b) Let $n \in \mathbb{N}_{>0}$. Calculate $\mathbb{P}[N \geq n]$.
(c) Calculate $\mathbb{E}[N]$.
(d) Let $r<-\log (1-p)$. Calculate the moment generating function $M_{N}(r)=\mathbb{E}[\exp \{r N\}]$ of $N$.
(e) Calculate $\left.\frac{d}{d r} M_{N}(r)\right|_{r=0}$. What do you observe?

## Exercise 1.2 Absolutely Continuous Distribution

Suppose that $Y$ follows an exponential distribution with parameter $\lambda>0$, i.e. the density $f_{Y}$ of $Y$ is given by

$$
f_{Y}(x)= \begin{cases}\lambda \exp \{-\lambda x\}, & \text { if } x \geq 0 \\ 0, & \text { else }\end{cases}
$$

(a) Show that the exponential distribution indeed defines a probability distribution on $\mathbb{R}$.
(b) Let $0<y_{1}<y_{2}$. Calculate $\mathbb{P}\left[y_{1} \leq Y \leq y_{2}\right]$.
(c) Calculate $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$.
(d) Let $r<\lambda$. Calculate the cumulant generating function $\log M_{Y}(r)=\log \mathbb{E}[\exp \{r Y\}]$ of $Y$.
(e) Calculate $\left.\frac{d^{2}}{d r^{2}} \log M_{Y}(r)\right|_{r=0}$. What do you observe?

## Exercise 1.3 Gaussian Distribution

For a random variable $X$ we write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ if $X$ follows a Gaussian distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma^{2}>0$. The density $f_{X}$ of $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right\}, \quad \text { for all } x \in \mathbb{R}
$$

(a) Show that the moment generating function $M_{X}$ of $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is given by

$$
M_{X}(r)=\exp \left\{r \mu+\frac{r^{2} \sigma^{2}}{2}\right\}, \quad \text { for all } r \in \mathbb{R}
$$

(b) Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $a, b \in \mathbb{R}$. Show that

$$
a+b X \sim \mathcal{N}\left(a+b \mu, b^{2} \sigma^{2}\right)
$$

(c) Let $X_{1}, \ldots, X_{n}$ be independent with $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ for all $i \in\{1, \ldots, n\}$. Show that

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

## Exercise $1.4 \quad \chi^{2}$-Distribution

For all $k \in \mathbb{N}_{>0}$ we assume that $X_{k}$ has a $\chi^{2}$-distribution with $k$ degrees of freedom, i.e. $X_{k}$ has density

$$
f_{X_{k}}(x)= \begin{cases}\frac{1}{2^{k / 2} \Gamma(k / 2)} x^{k / 2-1} \exp \{-x / 2\}, & \text { if } x \geq 0 \\ 0, & \text { else }\end{cases}
$$

(a) Let $M_{X_{k}}$ be the moment generating function of $X_{k}$. Show that

$$
M_{X_{k}}(r)=\frac{1}{(1-2 r)^{k / 2}}, \quad \text { for } r<1 / 2
$$

(b) Let $Z \sim \mathcal{N}(0,1)$. Show that $Z^{2} \stackrel{(d)}{=} X_{1}$.
(c) Let $Z_{1}, \ldots, Z_{k} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$. Show that $\sum_{i=1}^{k} Z_{i}^{2} \stackrel{(d)}{=} X_{k}$.

