Mathematical Finance
 Exercise Sheet 10

Submit by 12:00 on Wednesday, December 6 via the course homepage.

Exercise 10.1 (Construction of ζ) Let $S=\left(S_{t}\right)_{0 \leqslant t \leqslant T}$ be an RCLL process with $S_{0}=0$.
(a) Assume S is locally bounded, so that there exists a sequence $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ of stopping times increasing stationarily to T with $S^{\tau_{n}}$ bounded for each n. Show that there exists a strictly positive predictable process $\zeta \in L(S)$ such the random variable

$$
(\zeta \bullet S)_{T}^{*}:=\sup _{0 \leqslant t \leqslant T}\left|\zeta \bullet S_{t}\right|
$$

is bounded.
(b) Assume instead that S is a σ-martingale. Show that there exists a strictly positive predictable process $\zeta \in L(S)$ such the $(\zeta \bullet S)_{T}^{*}$ is integrable.

Exercise 10.2 (Sum of σ-martingales is a σ-martingale) Let S^{1} and S^{2} be σ-martingales. Show that the sum $S^{1}+S^{2}$ is again a σ-martingale.

Exercise 10.3 (Density of $\mathbb{P}_{\mathrm{e}, \sigma}$ in $\mathbb{P}_{\mathrm{a}, \sigma}$) Let $S=\left(S_{t}\right)_{0 \leqslant t \leqslant T}$ be a P-semimartingale. Recall the set $\mathbb{P}_{\mathrm{a}, \sigma}(S)$ defined by

$$
\mathbb{P}_{\mathrm{a}, \sigma}(S):=\left\{Q \ll P \text { on } \mathcal{F}_{T}: S \text { is a } Q \text { - } \sigma \text {-martingale }\right\} .
$$

(a) Show that the sets $\mathbb{P}_{\mathrm{a}, \sigma}(S)$ and $\mathbb{P}_{\mathrm{e}, \sigma}(S)$ are convex.
(b) Assume that $\mathbb{P}_{\mathrm{e}, \sigma}(S) \neq \varnothing$. Show that $\mathbb{P}_{\mathrm{e}, \sigma}(S)$ is $L^{1}(P)$-dense in $\mathbb{P}_{\mathrm{a}, \sigma}(S)$, in the sense that for each measure $Q \in \mathbb{P}_{\mathrm{a}, \sigma}(S)$, there is a sequence $\left(Q^{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{P}_{\mathrm{e}, \sigma}(S)$ such that $Z^{n} \rightarrow Z$ in $L^{1}(P)$, where Z^{n} and Z denote the densities of Q^{n} and Q with respect to P, respectively.

