Mathematical Finance
 Exercise Sheet 10

Submit by 12:00 on Wednesday, December 6 via the course homepage.

Exercise 10.1 (Construction of ζ) Let $S=\left(S_{t}\right)_{0 \leqslant t \leqslant T}$ be an RCLL process with $S_{0}=0$.
(a) Assume S is locally bounded, so that there exists a sequence $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ of stopping times increasing stationarily to T with $S^{\tau_{n}}$ bounded for each n. Show that there exists a strictly positive predictable process $\zeta \in L(S)$ such the random variable

$$
(\zeta \bullet S)_{T}^{*}:=\sup _{0 \leqslant t \leqslant T}\left|\zeta \bullet S_{t}\right|
$$

is bounded.
(b) Assume instead that S is a σ-martingale. Show that there exists a strictly positive predictable process $\zeta \in L(S)$ such the $(\zeta \bullet S)_{T}^{*}$ is integrable.

Solution 10.1

(a) Let $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ be a sequence of stopping times increasing stationarily to T such that $\left|S^{\tau_{n}}\right| \leqslant b_{n}$ for each n, where $b_{n}<\infty$ is some constant. Define the process ζ by

$$
\zeta:=\mathbf{1}_{\llbracket 0 \rrbracket}+\sum_{n=1}^{\infty} \frac{1}{2^{n}\left(b_{n-1}+b_{n}\right)} \mathbf{1}_{\rrbracket_{\tau_{n-1}, \tau_{n} \rrbracket} .} .
$$

As $\tau_{n}=T$ eventually with probability 1 , it follows that for almost all ω, the above series is really a finite sum (for ω such that $\tau_{n}(\omega)<T$ for all n, redefine $\zeta(\omega)=1)$. We thus have that $\zeta \bullet S$ is well defined. Moreover, we have

$$
\left|(\zeta \bullet S)_{T}^{*}\right| \leqslant \sum_{n=1}^{\infty} \frac{1}{2^{n}\left(b_{n-1}+b_{n}\right)}\left|S^{\tau_{n}}-S^{\tau_{n-1}}\right| \leqslant \sum_{n=1}^{\infty} \frac{1}{2^{n}}=1<\infty .
$$

Since S is strictly positive and predictable by construction, this completes the proof.
(b) As S is a σ-martingale, there exist a local martingale M null at zero and a strictly positive integrand $\psi \in L(M)$ such that $S=\psi \bullet M$. As ψ is strictly positive, then $\frac{1}{\psi}$ is well-defined, and we have

$$
\frac{1}{\psi} \bullet S=\frac{1}{\psi} \bullet(\psi \bullet M)=M .
$$

By Exercise 3.1, there exists a sequence of stopping times $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ increasing stationarily to T such that for each $n, M^{\tau_{n}} \in \mathcal{H}^{1}$, i.e. $\left(M^{\tau_{n}}\right)_{T}^{*} \in L^{1}$. Define the process ζ by

$$
\zeta:=\mathbf{1}_{\llbracket 0 \rrbracket}+\sum_{n=1}^{\infty} \frac{1}{2^{n}\left(\left\|\left(M^{\tau_{n}}\right)_{T}^{*}\right\|_{L^{1}}+\left\|\left(M^{\tau_{n-1}}\right)_{T}^{*}\right\|_{L^{1}}\right)} \frac{1}{\psi} \mathbf{1}_{\rrbracket \tau_{n-1}, \tau_{n} \rrbracket} .
$$

As $\tau_{n}=T$ eventually with probability 1 , it follows that for almost all ω, the above series is really a finite sum (for ω such that $\tau_{n}(\omega)<T$ for all n, redefine $\zeta(\omega)=1$). We thus have that $\zeta \bullet S$ is well defined. Moreover, we have

$$
\begin{aligned}
\left\|(\zeta \bullet S)_{T}^{*}\right\|_{L^{1}} & \leqslant \sum_{n=1}^{\infty} \frac{1}{2^{n}\left(\left\|\left(M^{\tau_{n}}\right)_{T}^{*}\right\|_{L^{1}}+\left\|\left(M^{\tau_{n-1}}\right)_{T}^{*}\right\|_{L^{1}}\right)}\left\|M^{\tau_{n}}-M^{\tau_{n-1}}\right\|_{L^{1}} \\
& \leqslant \sum_{n=1}^{\infty} \frac{1}{2^{n}}=1<\infty .
\end{aligned}
$$

Since S is strictly positive and predictable by construction, this completes the proof.

Exercise 10.2 (Sum of σ-martingales is a σ-martingale) Let S^{1} and S^{2} be σ-martingales. Show that the sum $S^{1}+S^{2}$ is again a σ-martingale.

Solution 10.2 There exist local martingales M^{1} and M^{2} and strictly positive integrands $\psi^{1} \in L\left(M^{1}\right)$ and $\psi^{2} \in L\left(M^{2}\right)$ such that $S^{1}-S_{0}^{1}=\psi^{1} \bullet M^{1}$ and $S^{2}-S_{0}^{2}=$ $\psi^{2} \bullet M^{2}$. Now set $\varphi^{1}:=\frac{1}{\psi^{1}}$ and $\varphi^{2}:=\frac{1}{\psi^{2}}$, which are well defined and strictly positive since ψ^{1} and ψ^{2} are. Note that the integral process

$$
\varphi^{1} \bullet S^{1}=\varphi^{1} \bullet\left(\psi^{1} \bullet M^{1}\right)=\left(\varphi^{1} \psi^{1}\right) \bullet M^{1}=M^{1}
$$

is a local martingale, and similarly $\varphi^{2} \bullet S^{2}=M^{2}$ is a local martingale. Now define $\varphi:=\varphi^{1} \wedge \varphi^{2}$, which is strictly positive since φ^{1} and φ^{2} are. We have

$$
\varphi \bullet S^{1}=\frac{\varphi}{\varphi^{1}} \bullet\left(\varphi^{1} \bullet S^{1}\right) \quad \text { and } \quad \varphi \bullet S^{2}=\frac{\varphi}{\varphi^{2}} \bullet\left(\varphi^{2} \bullet S^{2}\right),
$$

and since $\frac{\varphi}{\varphi^{1}}$ and $\frac{\varphi}{\varphi^{2}}$ are bounded (by 1), we get that $\varphi \bullet S^{1}$ and $\varphi \bullet S^{2}$ are local martingales. Since the sum of local martingales is a local martingale, we get that the integral process

$$
\varphi \bullet\left(S^{1}+S^{2}\right)=\varphi \bullet S^{1}+\varphi \bullet S^{2}
$$

is a local martingale, and thus

$$
S^{1}+S^{2}=S_{0}^{1}+S_{0}^{2}+\frac{1}{\varphi} \bullet\left(\varphi \bullet\left(S^{1}+S^{2}\right)\right)
$$

is a σ-martingale, as required.

Exercise 10.3 (Density of $\mathbb{P}_{\mathrm{e}, \sigma}$ in $\mathbb{P}_{\mathrm{a}, \sigma}$) Let $S=\left(S_{t}\right)_{0 \leqslant t \leqslant T}$ be a P-semimartingale. Recall the set $\mathbb{P}_{\mathrm{a}, \sigma}(S)$ defined by

$$
\mathbb{P}_{\mathrm{a}, \sigma}(S):=\left\{Q \ll P \text { on } \mathcal{F}_{T}: S \text { is a } Q \text { - } \sigma \text {-martingale }\right\} .
$$

(a) Show that the sets $\mathbb{P}_{\mathrm{a}, \sigma}(S)$ and $\mathbb{P}_{\mathrm{e}, \sigma}(S)$ are convex.
(b) Assume that $\mathbb{P}_{\mathrm{e}, \sigma}(S) \neq \varnothing$. Show that $\mathbb{P}_{\mathrm{e}, \sigma}(S)$ is $L^{1}(P)$-dense in $\mathbb{P}_{\mathrm{a}, \sigma}(S)$, in the sense that for each measure $Q \in \mathbb{P}_{\mathrm{a}, \sigma}(S)$, there is a sequence $\left(Q^{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{P}_{\mathrm{e}, \sigma}(S)$ such that $Z^{n} \rightarrow Z$ in $L^{1}(P)$, where Z^{n} and Z denote the densities of Q^{n} and Q with respect to P, respectively.

Solution 10.3

(a) We first prove that $\mathbb{P}_{\mathrm{a}, \sigma}(S)$ is convex. So take $P^{1}, P^{2} \in \mathbb{P}_{\mathrm{a}, \sigma}(S)$ and $\lambda \in(0,1)$. We need to show that $P^{0}:=\lambda P^{1}+(1-\lambda) P^{2} \in \mathbb{P}_{\mathrm{a}, \sigma}(S)$. Fix $i \in\{1,2\}$. By the definition of $\mathbb{P}_{\mathrm{a}, \sigma}(S)$, there exist a P^{i}-local martingale M^{i} null at zero and a strictly positive integrand $\psi^{i} \in L\left(M^{i}\right)$ such that $S-S_{0}=\psi^{i} \bullet M^{i}$. As ψ^{i} is strictly positive, the process $\varphi^{i}:=\frac{1}{\psi^{i}}$ is well defined. Moreover, we have

$$
\varphi^{i} \bullet S=\varphi^{i} \bullet\left(\psi^{i} \bullet M^{i}\right)=\left(\varphi^{i} \psi^{i}\right) \bullet M^{i}=M^{i}
$$

Now, define $\varphi:=\varphi^{1} \wedge \varphi^{2}$. As φ^{1} and φ^{2} are predictable and strictly positive, so is φ. We show that $\varphi \bullet S$ is a P^{0}-local martingale, since then

$$
S=S_{0}+\frac{1}{\varphi} \bullet(\varphi \bullet S)
$$

will be a $P^{0}-\sigma$-martingale. To this end, first note that

$$
\varphi \bullet S=\frac{\varphi}{\varphi^{i}} \bullet\left(\varphi^{i} \bullet S\right)=\frac{\varphi}{\varphi^{i}} \bullet M^{i}
$$

Since M^{i} is a P^{i}-local martingale and $\frac{\varphi}{\varphi^{i}}$ is bounded (by 1), we know that $\varphi \bullet S$ is a P^{i}-local martingale. By Exercise 3.1, every local martingale null at zero is locally in \mathcal{H}^{1}. So let $\left(\tau_{n}^{i}\right)_{n \in \mathbb{N}}$ be a sequence of stopping times increasing stationarily to T such that $(\varphi \bullet S)^{\tau_{n}^{i}} \in \mathcal{H}^{1}\left(P^{i}\right)$ for each n. Define $\tau_{n}:=\tau_{n}^{1} \wedge \tau_{n}^{2}$. Then $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ increases stationarily to T and $(\varphi \bullet S)^{\tau_{n}} \in \mathcal{H}^{1}\left(P^{1}\right) \cap \mathcal{H}^{1}\left(P^{2}\right)$. Now fix $0 \leqslant s \leqslant t \leqslant T$. We claim that

$$
E_{P^{0}}\left[(\varphi \bullet S)_{t}^{\tau_{n}} \mid \mathcal{F}_{s}\right]=(\varphi \bullet S)_{s}^{\tau_{n}} .
$$

To this end, take $A \in \mathcal{F}_{s}$, and using $E_{P^{0}}[\cdot]=\lambda E_{P^{1}}[\cdot]+(1-\lambda) E_{P^{2}}[\cdot]$, we can write

$$
\begin{aligned}
E_{P^{0}}\left[(\varphi \bullet S)_{s}^{\tau_{n}} \mathbf{1}_{A}\right] & =\lambda E_{P^{1}}\left[(\varphi \bullet S)_{s}^{\tau_{n}} \mathbf{1}_{A}\right]+(1-\lambda) E_{P^{2}}\left[(\varphi \bullet S)_{s}^{\tau_{n}} \mathbf{1}_{A}\right] \\
& =\lambda E_{P^{1}}\left[(\varphi \bullet S)_{t}^{\tau_{n}} \mathbf{1}_{A}\right]+(1-\lambda) E_{P^{2}}\left[(\varphi \bullet S)_{t}^{\tau_{n}} \mathbf{1}_{A}\right] \\
& =E_{P^{0}}\left[(\varphi \bullet S)_{t}^{\tau_{n}} \mathbf{1}_{A}\right] .
\end{aligned}
$$

It follows immediately that $E_{P^{0}}\left[(\varphi \bullet S)_{t}^{\tau_{n}} \mid \mathcal{F}_{s}\right]=(\varphi \bullet S)_{s}^{\tau_{n}}$, and thus $\varphi \bullet S$ is a P^{0}-local martingale, so that S is a $P^{0}-\sigma$-martingale.
Finally, take $A \in \mathcal{F}_{T}$ such that $P[A]=0$. Then $P^{1}[A]=P^{2}[A]=0$, and hence also $P^{0}[A]=0$. We have thus shown that $P^{0} \in \mathbb{P}_{\mathrm{a}, \sigma}(S)$.
Now if we have that $P^{1}, P^{2} \in \mathbb{P}_{\mathrm{e}, \sigma}(S)$, the above gives that $P^{0} \in \mathbb{P}_{\mathrm{a}, \sigma}(S)$, and thus it remains to show that $P \ll P^{0}$ on \mathcal{F}_{T}. To this end, take $A \in \mathcal{F}_{T}$ such that $P^{0}[A]=0$. As $\lambda \neq 0$, this means that $P^{1}[A]=0$, and hence $P[A]=0$ since $P \approx P^{1}$. This completes the proof.
(b) Fix $Q \in \mathbb{P}_{\mathrm{a}, \sigma}(S)$. We need to find a sequence $\left(Q^{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{P}_{\mathrm{e}, \sigma}(S)$ such that $Z^{n} \rightarrow Z$ in $L^{1}(P)$, where Z^{n} and Z denote the densities of Q^{n} and Q with respect to P, respectively. To this end, fix an arbitrary $Q^{0} \in \mathbb{P}_{\mathrm{e}, \sigma}(S)$ (which exists, since $\left.\mathbb{P}_{\mathrm{e}, \sigma}(S) \neq \varnothing\right)$, and for each $n \in \mathbb{N}$, define $Q^{n}:=\frac{1}{n} Q^{0}+\left(1-\frac{1}{n}\right) Q$. As $Q^{0}, Q \in \mathbb{P}_{\mathrm{a}, \sigma}(S)$, we know by part (a) that also $Q^{n} \in \mathbb{P}_{\mathrm{a}, \sigma}(S)$. To see that $Q^{n} \in \mathbb{P}_{\mathrm{e}, \sigma}(S)$, it thus suffices to show that $P \ll Q^{n}$ on \mathcal{F}_{T}. So take $A \in \mathcal{F}_{T}$ with $Q^{n}[A]=0$. Then $Q^{0}[A]=0$, and since $Q^{0} \approx P$, we also get $P[A]=0$ as required. So indeed $\left(Q^{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{P}_{\mathrm{e}, \sigma}(S)$. Now let Z^{n}, Z^{0} and Z denote the densities of Q^{n}, Q^{0} and Q with respect to P, respectively. We have $Z^{n}=\frac{1}{n} Z^{0}+\left(1-\frac{1}{n}\right) Z$, and thus

$$
\left\|Z^{n}-Z\right\|_{L^{1}(P)}=\frac{1}{n}\left\|Z^{0}-Z\right\|_{L^{1}(P)} \longrightarrow 0 \quad \text { as } n \rightarrow \infty
$$

This completes the proof.

