Mathematical Finance Exercise Sheet 11

Submit by 12:00 on Wednesday, December 13 via the course homepage.

Exercise 11.1 (Equivalence of (NA)) Show that S satisfies (NA) if and only if 0 is maximal in $\mathcal{G}_{\text {adm }}$.

Solution 11.1 We have that S satisfies (NA) if and only if $\mathcal{G}_{\text {adm }} \cap L_{+}^{0}=\{0\}$, and 0 is maximal in $\mathcal{G}_{\text {adm }}$ if and only if whenever $g \in \mathcal{G}_{\text {adm }}$ satisfies $g \geqslant 0$ (i.e. $g \in L_{+}^{0}$), we have $g=0$. It is clear that these two statements are equivalent, thus completing the proof.

Exercise 11.2 (Discrete time: all elements are maximal) Fix a finite time horizon $T \in \mathbb{N}$, and let $S=\left(S_{k}\right)_{k=0,1, \ldots, T}$ be a discrete-time process. Let Θ denote the space of all predictable processes. Show that if S satisfies (NA), then neither $\mathcal{G}_{\text {adm }}$ nor $G_{T}(\Theta)$ contain any non-maximal element.

Can you also show the result without using Theorem 1.2?

Solution 11.2 As $\mathcal{G}_{\text {adm }} \subseteq G_{T}(\Theta)$, it suffices to prove that every element of $G_{T}(\Theta)$ is maximal. So take $G_{T}(\vartheta) \in G_{T}(\Theta)$, and suppose $G_{T}\left(\vartheta^{\prime}\right) \in G_{T}(\Theta)$ such that $G_{T}(\vartheta) \leqslant G_{T}\left(\vartheta^{\prime}\right)$. Then we have

$$
G_{T}\left(\vartheta^{\prime}-\vartheta\right)=G_{T}\left(\vartheta^{\prime}\right)-G_{T}(\vartheta) \geqslant 0 .
$$

Since $\vartheta^{\prime}-\vartheta \in \Theta$, we have $G_{T}\left(\vartheta^{\prime}-\vartheta\right) \in G_{T}(\Theta) \cap L_{+}^{0}$. As S satisfies (NA), Theorem 1.2 implies that $G_{T}(\Theta) \cap L_{+}^{0}=\{0\}$, and hence $G_{T}\left(\vartheta^{\prime}-\vartheta\right)=0$. It follows immediately that $G_{T}(\vartheta)=G_{T}\left(\vartheta^{\prime}\right)$, so that $G_{T}(\vartheta)$ is maximal in $G_{T}(\Theta)$, as required.

Another way to get the result is as follows. Since S satisfies (NA), Corollary 1.3 implies that there is an equivalent martingale measure Q for S. Now take $G_{T}(\vartheta) \in G_{T}(\Theta)$, and suppose there exists $G_{T}\left(\vartheta^{\prime}\right) \in G_{T}(\Theta)$ satisfying $G_{T}\left(\vartheta^{\prime}\right) \geqslant G_{T}(\vartheta)$. Then we have $G_{T}\left(\vartheta^{\prime}-\vartheta\right) \geqslant 0$, and thus the Q-local martingale $G\left(\vartheta^{\prime}-\vartheta\right)$ is in fact a Q-martingale. This implies that $E\left[G_{T}\left(\vartheta^{\prime}-\vartheta\right)\right]=0$, and hence $G_{T}\left(\vartheta^{\prime}-\vartheta\right)=0 Q$-a.s., and thus also P-a.s. So we have $G_{T}(\vartheta)=G_{T}\left(\vartheta^{\prime}\right)$, and thus $G_{T}(\vartheta)$ is maximal in $G_{T}(\Theta)$. This completes the proof.

Exercise 11.3 (Uniqueness) Let S be an RCLL semimartingale satisfying
(NFLVR) and let w be a feasible weight function. Suppose $f \in L^{0}$ with $|f| \leqslant w$, and assume $\alpha=\beta$ are finite, where as usual $\alpha:=\inf \Gamma_{+}$and $\beta:=\sup \Gamma_{-}$are the superand subreplicating prices for f.
(a) Show that there exists a unique $g \in \mathcal{G}_{w}$ such that $f \leqslant \alpha+g$.
(b) Show directly (without using any results from the course) that g is maximal in \mathcal{G}_{w}.

Solution 11.3

(a) By Theorem 9.1, there exist $g, g^{\prime} \in \mathcal{G}_{w}$ with

$$
\alpha+g \geqslant f \quad \text { and } \quad-\beta+g^{\prime} \geqslant-f
$$

(Note this gives existence of g.) Adding these inequalities and remembering that $\alpha=\beta$, we get $g+g^{\prime} \geqslant 0$. But also by Lemma 8.1(a), we have $E_{Q}\left[g+g^{\prime}\right] \leqslant 0$ for any $Q \in \mathbb{P}_{e, \sigma}^{w}$, so that $g+g^{\prime}=0$. We then have

$$
\alpha+g \geqslant f \quad \text { and } \quad-\alpha-g \geqslant-f .
$$

The second inequality above is equivalent to $f \geqslant \alpha+g$, and together with the first inequality above we get $\alpha+g=f$, so that $g=f-\alpha$. It follows immediately that g is unique, as required.
(b) Assume $g^{\prime} \in \mathcal{G}$ with $g^{\prime} \geqslant g$. Then we have $f \leqslant \alpha+g \leqslant \alpha+g^{\prime}$, and by the uniqueness in part (a), we get $g^{\prime}=g$ so that g is maximal, as required.

Exercise 11.4 (Maximality in a larger set) Let S be an RCLL semimartingale satisfying (NFLVR). Let w be a feasible weight function and fix $g \in \mathcal{G}_{w}$. Define the random variable $w^{\prime}:=w+g^{+}$, where $g^{+}:=\max \{g, 0\}$. Show that w^{\prime} is a feasible weight function, and that if g is maximal in \mathcal{G}_{w} then g is also maximal in $\mathcal{G}_{w^{\prime}}$.

Solution 11.4 Since S satisfies (NFLVR), we know that $\mathbb{P}_{\mathrm{e}, \sigma}^{w} \neq \varnothing$. So take $Q \in \mathbb{P}_{\mathrm{e}, \sigma}^{w}$. By Lemma 8.1(a), we have $E_{Q}[g] \leqslant 0$, and hence $g^{+} \in L^{1}(Q)$. Since $w^{\prime} \geqslant w$ and $Q \in \mathbb{P}_{\mathrm{e}, \sigma}^{w} \subseteq \mathbb{P}_{\mathrm{e}, \sigma}$, it follows that w^{\prime} is a feasible weight function.
Now assume g is maximal in \mathcal{G}_{w}. Before showing g is maximal in $\mathcal{G}_{w^{\prime}}$, we first check that $\mathbb{P}_{\mathrm{e}, \sigma}^{w^{\prime}}=\mathbb{P}_{\mathrm{e}, \sigma}^{w}$. Since $w^{\prime} \geqslant w$, clearly $\mathbb{P}_{\mathrm{e}, \sigma}^{w^{\prime}} \subseteq \mathbb{P}_{\mathrm{e}, \sigma}^{w}$, and the reverse inclusion follows as $g^{+} \in L^{1}(Q)$ and $Q \in \mathbb{P}_{\mathrm{e}, \sigma}^{w}$ was chosen arbitrarily.

Now using $w^{\prime} \geqslant w$ and $\mathbb{P}_{e, \sigma}^{w^{\prime}}=\mathbb{P}_{e, \sigma}^{w}$, we have $\mathcal{G}_{w^{\prime}} \supseteq \mathcal{G}_{w}$, so that in particular $g \in \mathcal{G}_{w^{\prime}}$. It remains to prove that g is also maximal in $\mathcal{G}_{w^{\prime}}$. To this end, suppose $\widetilde{g} \in \mathcal{G}_{w^{\prime}}$ with $\tilde{g} \geqslant g$. As $g \in \mathcal{G}_{w}$, there exists some $a \geqslant 0$ such that $g \geqslant-a w$, and thus also $\tilde{g} \geqslant-a w$. Hence Lemma 8.1(d) gives $\tilde{g} \in \mathcal{G}_{a w}^{1} \subseteq \mathcal{G}_{w}$. As $\tilde{g} \in \mathcal{G}_{w}$ and g is maximal in \mathcal{G}_{w}, it follows that $\widetilde{g}=g$, as claimed.

Updated: December 6, 2023

Exercise 11.5 (An example where $\Gamma_{+} \cap \Gamma_{-}$is large) Construct a model for a financial market and a payoff f such that $\Gamma_{+}(f)$ and $\Gamma_{-}(f)$ intersect in more than one point.

Solution 11.5 Consider a process $S=\left(S_{0}, S_{1}\right)$ in discrete time such that $S_{0}=1$ and S_{1} satisfies $P\left[S_{1}=\frac{3}{2}\right]=P\left[S_{1}=2\right]=\frac{1}{2}$. Note that for each $b \in \mathbb{R}$ there is an element $G_{T}\left(\vartheta_{b}\right) \in G_{T}(\Theta)$ satisfying $P\left[G_{T}\left(\vartheta_{b}\right)=b\right]=P\left[G_{T}\left(\vartheta_{b}\right)=\frac{b}{2}\right]=\frac{1}{2}$, and moreover every element $G_{T}(\vartheta) \in G_{T}(\Theta)$ is of this form.

Now define the payoff $f \equiv 0$. A real number $a \in \mathbb{R}$ is an element of $\Gamma_{+}(f)$ if $a+b \geqslant 0$ and $a+\frac{b}{2} \geqslant 0$ for some $b \in \mathbb{R}$. Thus $\Gamma_{+} \supseteq\left[-\frac{b}{2}, \infty\right)$ for all $b \geqslant 0$, and hence $\Gamma_{+}(f)=\mathbb{R}$.
Similarly, a real number $a \in \mathbb{R}$ is an element of $\Gamma_{-}(f)$ if $a \leqslant b$ and $a \leqslant \frac{b}{2}$ for some $b \in \mathbb{R}$. Thus $\Gamma_{-} \supseteq\left(-\infty, \frac{b}{2}\right]$ for all $b \geqslant 0$, and hence $\Gamma_{-}(f)=\mathbb{R}$, so that $\Gamma_{+}(f) \cap \Gamma_{-}(f)=\mathbb{R}$.

