Mathematical Finance Exercise Sheet 12

Submit by 12:00 on Wednesday, December 20 via the course homepage.

Exercise 12.1 (Some properties of $u) \quad$ Let $U:(0, \infty) \rightarrow \mathbb{R}$ be a concave and increasing function. Define the function $u:(0, \infty) \rightarrow(-\infty,+\infty]$ by

$$
u(x):=\sup _{V \in \mathcal{V}(x)} E\left[U\left(V_{T}\right)\right],
$$

where $\mathcal{V}(x):=\left\{x+G(\vartheta): \vartheta \in \Theta_{\mathrm{adm}}^{x}\right\}$.
(a) Show that u is concave and increasing.
(b) If additionally $u\left(x_{0}\right)<\infty$ for some $x_{0}>0$, show that $u(x)<\infty$ for all $x>0$.

Solution 12.1

(a) We first prove that u is concave. So fix $x, y \in(0, \infty)$ and $\lambda \in(0,1)$. We need to show that

$$
u(\lambda x+(1-\lambda) y) \geqslant \lambda u(x)+(1-\lambda) u(y)
$$

First note that if either $u(x)$ or $u(y)$ is $-\infty$, then the inequality holds trivially. So assume that $u(x), u(y)>-\infty$. Take $x+G\left(\vartheta^{x}\right) \in \mathcal{V}(x)$ and $y+G\left(\vartheta^{y}\right) \in \mathcal{V}(y)$ with $U\left(x+G\left(\vartheta^{x}\right)\right)^{-}, U\left(y+G\left(\vartheta^{y}\right)\right)^{-}$both in L^{1}. Then
$\lambda\left(x+G\left(\vartheta^{x}\right)\right)+(1-\lambda)\left(y+G\left(\vartheta^{y}\right)\right)=\lambda x+(1-\lambda) y+G\left(\lambda \vartheta^{x}+(1-\lambda) \vartheta^{y}\right)$.
As U is concave, we have
$\lambda U\left(x+G\left(\vartheta^{x}\right)\right)+(1-\lambda) U\left(y+G\left(\vartheta^{y}\right)\right) \leqslant U\left(\lambda x+(1-\lambda) y+G\left(\lambda \vartheta^{x}+(1-\lambda) \vartheta^{y}\right)\right)$.
So also $\left.U\left(\lambda x+(1-\lambda) y+G \lambda \vartheta^{x}+(1-\lambda) \vartheta^{y}\right)\right)^{-} \in L^{1}$. Now because we have $\lambda \vartheta^{x}+(1-\lambda) \vartheta^{y} \in \Theta_{\mathrm{adm}}^{\lambda x+(1-\lambda) y}$, we can take expectations in the above, and this gives

$$
\lambda E\left[U\left(x+G\left(\vartheta^{x}\right)\right)\right]+(1-\lambda) E\left[U\left(y+G\left(\vartheta^{y}\right)\right)\right] \leqslant u(\lambda x+(1-\lambda) y) .
$$

Finally, taking the supremum over all $x+G\left(\vartheta^{x}\right) \in \mathcal{V}(x)$ and $y+G\left(\vartheta^{y}\right) \in \mathcal{V}(y)$ with integrable negative parts gives the required inequality.

It remains to prove that u is increasing. This follows from the fact that $\Theta_{\mathrm{adm}}^{x} \subseteq \Theta_{\mathrm{adm}}^{y}$ for $0<x<y$. Indeed, for $x+G\left(\vartheta^{x}\right) \in \mathcal{V}(x)$ so that $\vartheta^{x} \in \Theta_{\mathrm{adm}}^{x}$, we have $y+G\left(\vartheta^{x}\right) \in \mathcal{V}(y)$, and as U is increasing, this implies

$$
E\left[U\left(x+G\left(\vartheta^{x}\right)\right)\right] \leqslant E\left[U\left(y+G\left(\vartheta^{x}\right)\right)\right] \leqslant u(y)
$$

Taking the supremum over all $\vartheta^{x} \in \Theta_{\mathrm{adm}}^{x}$ gives $u(x) \leqslant u(y)$, completing the proof.
(b) As u is increasing, we know that $u(x)<\infty$ for all $x<x_{0}$. It thus remains to show that $u(x)<\infty$ for all $x>x_{0}$. By choosing $\lambda \in(0,1)$ small enough, we can find $y \in\left(0, x_{0}\right)$ such that

$$
x_{0}=\lambda x+(1-\lambda) y .
$$

By concavity of u, we have

$$
\lambda u(x)+(1-\lambda) u(y) \leqslant u\left(x_{0}\right)<\infty
$$

which gives the result because $u(y) \leqslant u\left(x_{0}\right)<\infty$ and $u(y) \geqslant U(y)>-\infty$.

Exercise 12.2 (Utility in a complete market) Consider a financial market modelled by an \mathbb{R}^{d}-valued semimartingale S satisfying NFLVR. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be a utility function such that $u\left(x_{0}\right)<\infty$ for some $x_{0} \in(0, \infty)$.
(a) Assume that the market is complete in the sense that there exists a unique $\mathrm{E} \sigma \mathrm{MM} Q$ on \mathcal{F}_{T}. Assume furthermore that \mathcal{F}_{0} is trivial and fix $z>0$. Show that $h \leqslant z \frac{\mathrm{~d} Q}{\mathrm{~d} P} P$-a.s. for all $h \in \mathcal{D}(z)$, and deduce that

$$
j(z)=E\left[J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)\right]
$$

(b) Consider the Black-Scholes market ($\widetilde{S}^{0}, \widetilde{S}^{1}$) given by

$$
\begin{array}{ll}
\mathrm{d} \tilde{S}_{0}^{0}=r \tilde{S}_{t}^{0} \mathrm{~d} t, & \tilde{S}_{0}^{0}=1 \\
\mathrm{~d} \tilde{S}_{t}^{1}=\tilde{S}_{t}^{1}\left(\mu \mathrm{~d} t+\sigma \mathrm{d} W_{t}\right), & \tilde{S}_{0}^{1}=s>0
\end{array}
$$

Let $U:(0, \infty) \rightarrow \mathbb{R}$ be defined by $U(x):=\frac{1}{\gamma} x^{\gamma}$, where $\gamma \in(-\infty, 1) \backslash\{0\}$. Show that for $z>0$,

$$
j(z)=\frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} \exp \left(\frac{1}{2} \frac{\gamma}{(1-\gamma)^{2}} \frac{(\mu-r)^{2} T}{\sigma^{2}}\right)
$$

Solution 12.2

(a) Recall that in general, a payoff $H \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$ is attainable if and only if the supremum

$$
\sup _{Q^{0} \in \mathbb{P}_{\mathrm{e}, \sigma}} E_{Q^{0}}[H]
$$

is finite and attained at some $Q^{*} \in \mathbb{P}_{\mathrm{e}, \sigma}$. In our setting, $\mathbb{P}_{\mathrm{e}, \sigma}$ is the singleton set $\{Q\}$, so that a payoff $H \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$ is attainable if and only if $E_{Q}[H]<\infty$, i.e. if and only if $H \in L_{+}^{1}\left(Q, \mathcal{F}_{T}\right)$.

Now we recall that

$$
\mathcal{D}(z):=\left\{h \in L_{+}^{0}\left(\mathcal{F}_{T}\right): \exists Z \in \mathcal{Z}(z) \text { with } h \leqslant Z_{T}\right\} .
$$

So take $h \in \mathcal{D}(z)$ and suppose for contradiction that we do not have $h \leqslant z \frac{\mathrm{~d} Q}{\mathrm{~d} P}$ P-a.s. Then setting $A:=\left\{h>z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right\}$, we have $P[A]>0$. Now define the process $M=\left(M_{t}\right)_{0 \leqslant t \leqslant T}$ by

$$
M_{t}:=E_{Q}\left[\mathbf{1}_{A} \mid \mathcal{F}_{t}\right] .
$$

Then M is a nonnegative Q-martingale with $M_{0}=Q[A]>0$ because $Q \approx P$. Since $E_{Q}\left[M_{T}\right] \leqslant 1<\infty$, it follows that $M_{T} \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$ is attainable so that there exists some $\vartheta \in \Theta_{\text {adm }}$ with

$$
M=M_{0}+G(\vartheta)
$$

Since M is nonnegative, we must have $\vartheta \in \Theta_{\text {adm }}^{M_{0}}$ and hence $M \in \mathcal{V}\left(M_{0}\right)$.
Now, since $h \in \mathcal{D}(z)$, there exists $Z \in \mathcal{Z}(z)$ such that $h \leqslant Z_{T}$. By the definition of $\mathcal{Z}(z)$, the product $Z M$ is a P-supermartingale. We thus have

$$
E\left[h M_{T}\right] \leqslant E\left[Z_{T} M_{T}\right] \leqslant E\left[Z_{0} M_{0}\right]=z M_{0} .
$$

Also, we have $E\left[z \frac{\mathrm{~d} Q}{\mathrm{~d} P} M_{T}\right]=E_{Q}\left[z M_{T}\right]=z M_{0}$, and thus

$$
E\left[\left(h-z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right) M_{T}\right] \leqslant 0
$$

But recalling $M_{T}=\mathbf{1}_{A}$ and $P[A]>0$ gives

$$
E\left[\left(h-z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right) M_{T}\right]>0
$$

which gives a contradiction. Hence we must have $h \leqslant z \frac{\mathrm{~d} Q}{\mathrm{~d} P} P$-a.s., as required. In particular, as any $Z_{T} \in \mathcal{D}(z)$ for $Z \in \mathcal{Z}(z)$, this gives $Z_{T} \leqslant z \frac{\mathrm{~d} Q}{\mathrm{~d} P}$ for any $Z \in \mathcal{Z}(z)$.
It remains to show $j(z)=E\left[J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)\right]$. First we recall

$$
j(z):=\inf _{Z \in \mathcal{Z}(z)} E\left[J\left(Z_{T}\right)\right] .
$$

Updated: December 13, 2023

For each $Z \in \mathcal{Z}(z)$ we have $Z_{T} \leqslant z \frac{\mathrm{~d} Q}{\mathrm{~d} P}$. As J is decreasing, we have

$$
J\left(Z_{T}\right) \geqslant J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)
$$

and thus

$$
E\left[J\left(Z_{T}\right)\right] \geqslant E\left[J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)\right]
$$

Taking the infimum over all $Z \in \mathcal{Z}(z)$ gives

$$
j(z) \geqslant E\left[J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)\right] .
$$

As $z \frac{\mathrm{~d} Q}{\mathrm{~d} P} \in \mathcal{Z}(z)$, this concludes the proof.
(b) In the Black-Scholes model, there exists a unique EMM Q, and thus part (a) is applicable. We hence have

$$
j(z)=E\left[J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)\right] .
$$

To compute this, we start by writing

$$
J(y)=\sup _{x>0}(U(x)-x y)=\sup _{x>0}\left(\frac{1}{\gamma} x^{\gamma}-x y\right) .
$$

Taking the derivative of $\frac{1}{\gamma} x^{\gamma}-x y$ with respect to x and setting it equal to zero, we get $x=y^{\frac{1}{\gamma-1}}$, and hence

$$
J(y)=\frac{1}{\gamma} y^{\frac{\gamma}{\gamma-1}}-y^{\frac{\gamma}{\gamma-1}}=\frac{1-\gamma}{\gamma} y^{\frac{\gamma}{\gamma-1}} .
$$

We also recall that in the Black-Scholes model,

$$
\frac{\mathrm{d} Q}{\mathrm{~d} P}=\mathcal{E}(-\lambda W)_{T}
$$

where $\lambda:=\frac{\mu-r}{\sigma}$. So we have

$$
\begin{aligned}
j(z) & =E\left[J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)\right] \\
& =\frac{1-\gamma}{\gamma} E\left[\mathcal{E}(-\lambda W)_{T}^{\frac{\gamma}{\gamma-1}}\right] \\
& =\frac{1-\gamma}{\gamma} z^{\frac{\gamma}{\gamma-1}} E\left[\exp \left(\frac{\lambda \gamma}{1-\gamma} W_{T}+\frac{1}{2} \frac{\lambda^{2} \gamma}{1-\gamma} T\right)\right] \\
& =\frac{1-\gamma}{\gamma} z^{\frac{\gamma}{\gamma-1}} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right) E\left[\mathcal{E}\left(\frac{\lambda \gamma}{1-\gamma} W\right)_{T}\right] \\
& =\frac{1-\gamma}{\gamma} z^{\frac{\gamma}{\gamma-1}} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right),
\end{aligned}
$$

where in the last step we use that $\mathcal{E}(a W)$ is a P-martingale for each $a \in \mathbb{R}$. Substituting $\lambda=\frac{\mu-r}{\sigma}$ then gives the result.

Exercise 12.3 (Utility in a market with arbitrage) Consider a general market with finite time horizon T. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be an increasing and concave utility function. Suppose that U is unbounded from above and that either the market admits a 0 -admissible arbitrage opportunity, or we are in finite discrete time and the market admits an (admissible) arbitrage opportunity. Show that in both cases, we have $u \equiv \infty$.

Without imposing that U is unbounded from above, what can you say about the relationship between $u(x)$ and $U(x)$ as $x \rightarrow \infty$?

Solution 12.3 By assumption, there exists $\vartheta \in \Theta_{\text {adm }}$ such that $G_{T}(\vartheta) \geqslant 0 P$-a.s. and $P\left[G_{T}(\vartheta)>0\right]>0$. By Exercise 4.2, we may assume that ϑ is 0 -admissible, and so also $n \vartheta$ is 0 -admissible for each $n \in \mathbb{N}$. It follows that $x+n G_{T}(\vartheta) \in \mathcal{V}(x)$ for every $x>0$ and $n \in \mathbb{N}$. So setting $A:=\left\{G_{T}(\vartheta)>0\right\}$, we have that for all $x>0$ and $n \in \mathbb{N}$,

$$
u(x) \geqslant E\left[U\left(x+n G_{T}(\vartheta)\right)\right]=E\left[U\left(x+n G_{T}(\vartheta)\right) \mathbf{1}_{A}\right]+E\left[U(x) \mathbf{1}_{A^{c}}\right] .
$$

As U is increasing, we can let $n \rightarrow \infty$ and apply the monotone convergence theorem to get that for all $x>0$,

$$
u(x) \geqslant E\left[U(\infty) \mathbf{1}_{A}\right]+E\left[U(x) \mathbf{1}_{A^{c}}\right]
$$

Note that U is increasing gives that the limit $U(\infty):=\lim _{x \rightarrow \infty} U(x) \in \mathbb{R} \cup\{\infty\}$ exists. Since U is unbounded from above we have $U(\infty)=\infty$, and as $P[A]>0$, we can conclude that $u \equiv \infty$, as required.

Now suppose that U is not necessarily unbounded from above. We still have

$$
u(x) \geqslant E\left[U(\infty) \mathbf{1}_{A}\right]+E\left[U(x) \mathbf{1}_{A^{c}}\right]=U(\infty) P[A]+U(x) P\left[A^{c}\right] .
$$

Also, by the definition of $u, u(x) \leqslant U(\infty)$ as U is increasing. So for each $x>0$,

$$
U(\infty) P[A]+U(x) P\left[A^{c}\right] \leqslant u(x) \leqslant U(\infty) .
$$

Letting $x \rightarrow \infty$ in the above gives $u(\infty)=U(\infty)$. This completes the problem.

