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Exercise 12.1 (Some properties of u) Let U : (0, ∞) → R be a concave and
increasing function. Define the function u : (0, ∞) → (−∞, +∞] by

u(x) := sup
V ∈V(x)

E[U(VT )],

where V(x) := {x + G(ϑ) : ϑ ∈ Θx
adm}.

(a) Show that u is concave and increasing.

(b) If additionally u(x0) < ∞ for some x0 > 0, show that u(x) < ∞ for all x > 0.

Solution 12.1

(a) We first prove that u is concave. So fix x, y ∈ (0, ∞) and λ ∈ (0, 1). We need
to show that

u
(
λx + (1 − λ)y

)
⩾ λu(x) + (1 − λ)u(y).

First note that if either u(x) or u(y) is −∞, then the inequality holds trivially.
So assume that u(x), u(y) > −∞. Take x+G(ϑx) ∈ V(x) and y +G(ϑy) ∈ V(y)
with U(x + G(ϑx))−, U(y + G(ϑy))− both in L1. Then

λ
(
x + G(ϑx)

)
+ (1 − λ)

(
y + G(ϑy)

)
= λx + (1 − λ)y + G

(
λϑx + (1 − λ)ϑy

)
.

As U is concave, we have

λU
(
x+G(ϑx)

)
+(1−λ)U

(
y+G(ϑy)

)
⩽ U

(
λx+(1−λ)y+G

(
λϑx+(1−λ)ϑy

))
.

So also U(λx + (1 − λ)y + Gλϑx + (1 − λ)ϑy))− ∈ L1. Now because we have
λϑx + (1 − λ)ϑy ∈ Θλx+(1−λ)y

adm , we can take expectations in the above, and this
gives

λE
[
U
(
x + G(ϑx)

)]
+ (1 − λ)E

[
U
(
y + G(ϑy)

)]
⩽ u

(
λx + (1 − λ)y

)
.

Finally, taking the supremum over all x + G(ϑx) ∈ V(x) and y + G(ϑy) ∈ V(y)
with integrable negative parts gives the required inequality.
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It remains to prove that u is increasing. This follows from the fact that
Θx

adm ⊆ Θy
adm for 0 < x < y. Indeed, for x + G(ϑx) ∈ V(x) so that ϑx ∈ Θx

adm,
we have y + G(ϑx) ∈ V(y), and as U is increasing, this implies

E
[
U
(
x + G(ϑx)

)]
⩽ E

[
U
(
y + G(ϑx)

)]
⩽ u(y).

Taking the supremum over all ϑx ∈ Θx
adm gives u(x) ⩽ u(y), completing the

proof.

(b) As u is increasing, we know that u(x) < ∞ for all x < x0. It thus remains to
show that u(x) < ∞ for all x > x0. By choosing λ ∈ (0, 1) small enough, we
can find y ∈ (0, x0) such that

x0 = λx + (1 − λ)y.

By concavity of u, we have

λu(x) + (1 − λ)u(y) ⩽ u(x0) < ∞,

which gives the result because u(y) ⩽ u(x0) < ∞ and u(y) ⩾ U(y) > −∞.

Exercise 12.2 (Utility in a complete market) Consider a financial market modelled
by an Rd-valued semimartingale S satisfying NFLVR. Let U : (0, ∞) → R be a
utility function such that u(x0) < ∞ for some x0 ∈ (0, ∞).

(a) Assume that the market is complete in the sense that there exists a unique
EσMM Q on FT . Assume furthermore that F0 is trivial and fix z > 0. Show
that h ⩽ z dQ

dP
P -a.s. for all h ∈ D(z), and deduce that

j(z) = E

[
J
(

z
dQ

dP

)]
.

.

(b) Consider the Black–Scholes market (S̃0, S̃1) given by

dS̃0
0 = rS̃0

t dt, S̃0
0 = 1,

dS̃1
t = S̃1

t (µ dt + σ dWt), S̃1
0 = s > 0.

Let U : (0, ∞) → R be defined by U(x) := 1
γ
xγ , where γ ∈ (−∞, 1)\{0}. Show

that for z > 0,

j(z) = 1 − γ

γ
z− γ

1−γ exp
(

1
2

γ

(1 − γ)2
(µ − r)2T

σ2

)
.

Solution 12.2
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(a) Recall that in general, a payoff H ∈ L0
+(FT ) is attainable if and only if the

supremum
sup

Q0∈Pe,σ

EQ0 [H]

is finite and attained at some Q∗ ∈ Pe,σ. In our setting, Pe,σ is the singleton
set {Q}, so that a payoff H ∈ L0

+(FT ) is attainable if and only if EQ[H] < ∞,
i.e. if and only if H ∈ L1

+(Q, FT ).

Now we recall that

D(z) := {h ∈ L0
+(FT ) : ∃Z ∈ Z(z) with h ⩽ ZT }.

So take h ∈ D(z) and suppose for contradiction that we do not have h ⩽ z dQ
dP

P -a.s. Then setting A := {h > z dQ
dP

}, we have P [A] > 0. Now define the
process M = (Mt)0⩽t⩽T by

Mt := EQ[1A | Ft].

Then M is a nonnegative Q-martingale with M0 = Q[A] > 0 because Q ≈ P .
Since EQ[MT ] ⩽ 1 < ∞, it follows that MT ∈ L0

+(FT ) is attainable so that
there exists some ϑ ∈ Θadm with

M = M0 + G(ϑ).

Since M is nonnegative, we must have ϑ ∈ ΘM0
adm and hence M ∈ V(M0).

Now, since h ∈ D(z), there exists Z ∈ Z(z) such that h ⩽ ZT . By the definition
of Z(z), the product ZM is a P -supermartingale. We thus have

E[hMT ] ⩽ E[ZT MT ] ⩽ E[Z0M0] = zM0.

Also, we have E[z dQ
dP

MT ] = EQ[zMT ] = zM0, and thus

E

[(
h − z

dQ

dP

)
MT

]
⩽ 0.

But recalling MT = 1A and P [A] > 0 gives

E

[(
h − z

dQ

dP

)
MT

]
> 0,

which gives a contradiction. Hence we must have h ⩽ z dQ
dP

P -a.s., as required.
In particular, as any ZT ∈ D(z) for Z ∈ Z(z), this gives ZT ⩽ z dQ

dP
for any

Z ∈ Z(z).

It remains to show j(z) = E[J(z dQ
dP

)]. First we recall

j(z) := inf
Z∈Z(z)

E[J(ZT )].

Updated: December 13, 2023 3 / 5



Mathematical Finance, Fall 2023 Exercise Sheet 12

For each Z ∈ Z(z) we have ZT ⩽ z dQ
dP

. As J is decreasing, we have

J(ZT ) ⩾ J

(
z

dQ

dP

)
,

and thus
E[J(ZT )] ⩾ E

[
J

(
z

dQ

dP

)]
.

Taking the infimum over all Z ∈ Z(z) gives

j(z) ⩾ E

[
J

(
z

dQ

dP

)]
.

As z dQ
dP

∈ Z(z), this concludes the proof.

(b) In the Black–Scholes model, there exists a unique EMM Q, and thus part (a)
is applicable. We hence have

j(z) = E

[
J

(
z

dQ

dP

)]
.

To compute this, we start by writing

J(y) = sup
x>0

(
U(x) − xy

)
= sup

x>0

(
1
γ

xγ − xy

)
.

Taking the derivative of 1
γ
xγ − xy with respect to x and setting it equal to zero,

we get x = y
1

γ−1 , and hence

J(y) = 1
γ

y
γ

γ−1 − y
γ

γ−1 = 1 − γ

γ
y

γ
γ−1 .

We also recall that in the Black–Scholes model,
dQ

dP
= E(−λW )T ,

where λ := µ−r
σ

. So we have

j(z) = E

[
J

(
z

dQ

dP

)]

= 1 − γ

γ
E
[
E(−λW )

γ
γ−1
T

]

= 1 − γ

γ
z

γ
γ−1 E

[
exp

(
λγ

1 − γ
WT + 1

2
λ2γ

1 − γ
T

)]

= 1 − γ

γ
z

γ
γ−1 exp

(
1
2

λ2γ

(1 − γ)2 T

)
E

[
E
(

λγ

1 − γ
W

)
T

]

= 1 − γ

γ
z

γ
γ−1 exp

(
1
2

λ2γ

(1 − γ)2 T

)
,
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where in the last step we use that E(aW ) is a P -martingale for each a ∈ R.
Substituting λ = µ−r

σ
then gives the result.

Exercise 12.3 (Utility in a market with arbitrage) Consider a general market
with finite time horizon T . Let U : (0, ∞) → R be an increasing and concave utility
function. Suppose that U is unbounded from above and that either the market
admits a 0-admissible arbitrage opportunity, or we are in finite discrete time and the
market admits an (admissible) arbitrage opportunity. Show that in both cases, we
have u ≡ ∞.

Without imposing that U is unbounded from above, what can you say about the
relationship between u(x) and U(x) as x → ∞?

Solution 12.3 By assumption, there exists ϑ ∈ Θadm such that GT (ϑ) ⩾ 0 P -a.s.
and P [GT (ϑ) > 0] > 0. By Exercise 4.2, we may assume that ϑ is 0-admissible, and
so also nϑ is 0-admissible for each n ∈ N. It follows that x + nGT (ϑ) ∈ V(x) for
every x > 0 and n ∈ N. So setting A := {GT (ϑ) > 0}, we have that for all x > 0
and n ∈ N,

u(x) ⩾ E
[
U
(
x + nGT (ϑ)

)]
= E

[
U
(
x + nGT (ϑ)

)
1A

]
+ E

[
U(x)1Ac

]
.

As U is increasing, we can let n → ∞ and apply the monotone convergence theorem
to get that for all x > 0,

u(x) ⩾ E
[
U(∞)1A

]
+ E

[
U(x)1Ac

]
.

Note that U is increasing gives that the limit U(∞) := limx→∞ U(x) ∈ R ∪ {∞}
exists. Since U is unbounded from above we have U(∞) = ∞, and as P [A] > 0, we
can conclude that u ≡ ∞, as required.

Now suppose that U is not necessarily unbounded from above. We still have

u(x) ⩾ E
[
U(∞)1A

]
+ E

[
U(x)1Ac

]
= U(∞)P [A] + U(x)P [Ac].

Also, by the definition of u, u(x) ⩽ U(∞) as U is increasing. So for each x > 0,

U(∞)P [A] + U(x)P [Ac] ⩽ u(x) ⩽ U(∞).

Letting x → ∞ in the above gives u(∞) = U(∞). This completes the problem.
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