Mathematical Finance Exercise Sheet 12

Submit by 12:00 on Wednesday, December 20 via the course homepage.

Exercise 12.1 (Some properties of u) Let $U : (0, \infty) \to \mathbb{R}$ be a concave and increasing function. Define the function $u : (0, \infty) \to (-\infty, +\infty]$ by

$$u(x) := \sup_{V \in \mathcal{V}(x)} E[U(V_T)],$$

where $\mathcal{V}(x) := \{x + G(\vartheta) : \vartheta \in \Theta_{\mathrm{adm}}^x\}.$

- (a) Show that u is concave and increasing.
- (b) If additionally $u(x_0) < \infty$ for some $x_0 > 0$, show that $u(x) < \infty$ for all x > 0.

Solution 12.1

(a) We first prove that u is concave. So fix $x, y \in (0, \infty)$ and $\lambda \in (0, 1)$. We need to show that

$$u(\lambda x + (1 - \lambda)y) \ge \lambda u(x) + (1 - \lambda)u(y).$$

First note that if either u(x) or u(y) is $-\infty$, then the inequality holds trivially. So assume that $u(x), u(y) > -\infty$. Take $x + G(\vartheta^x) \in \mathcal{V}(x)$ and $y + G(\vartheta^y) \in \mathcal{V}(y)$ with $U(x + G(\vartheta^x))^-, U(y + G(\vartheta^y))^-$ both in L^1 . Then

$$\lambda \Big(x + G(\vartheta^x) \Big) + (1 - \lambda) \Big(y + G(\vartheta^y) \Big) = \lambda x + (1 - \lambda) y + G\Big(\lambda \vartheta^x + (1 - \lambda) \vartheta^y \Big).$$

As U is concave, we have

$$\lambda U \Big(x + G(\vartheta^x) \Big) + (1 - \lambda) U \Big(y + G(\vartheta^y) \Big) \leqslant U \Big(\lambda x + (1 - \lambda) y + G \Big(\lambda \vartheta^x + (1 - \lambda) \vartheta^y \Big) \Big).$$

So also $U(\lambda x + (1 - \lambda)y + G\lambda\vartheta^x + (1 - \lambda)\vartheta^y))^- \in L^1$. Now because we have $\lambda\vartheta^x + (1 - \lambda)\vartheta^y \in \Theta_{\text{adm}}^{\lambda x + (1 - \lambda)y}$, we can take expectations in the above, and this gives

$$\lambda E\Big[U\Big(x+G(\vartheta^x)\Big)\Big]+(1-\lambda)E\Big[U\Big(y+G(\vartheta^y)\Big)\Big]\leqslant u\Big(\lambda x+(1-\lambda)y\Big).$$

Finally, taking the supremum over all $x + G(\vartheta^x) \in \mathcal{V}(x)$ and $y + G(\vartheta^y) \in \mathcal{V}(y)$ with integrable negative parts gives the required inequality.

Updated: December 13, 2023

1/5

It remains to prove that u is increasing. This follows from the fact that $\Theta_{\text{adm}}^x \subseteq \Theta_{\text{adm}}^y$ for 0 < x < y. Indeed, for $x + G(\vartheta^x) \in \mathcal{V}(x)$ so that $\vartheta^x \in \Theta_{\text{adm}}^x$, we have $y + G(\vartheta^x) \in \mathcal{V}(y)$, and as U is increasing, this implies

$$E\left[U\left(x+G(\vartheta^x)\right)\right] \leqslant E\left[U\left(y+G(\vartheta^x)\right)\right] \leqslant u(y).$$

Taking the supremum over all $\vartheta^x \in \Theta^x_{adm}$ gives $u(x) \leq u(y)$, completing the proof.

(b) As u is increasing, we know that $u(x) < \infty$ for all $x < x_0$. It thus remains to show that $u(x) < \infty$ for all $x > x_0$. By choosing $\lambda \in (0, 1)$ small enough, we can find $y \in (0, x_0)$ such that

$$x_0 = \lambda x + (1 - \lambda)y.$$

By concavity of u, we have

$$\lambda u(x) + (1 - \lambda)u(y) \leqslant u(x_0) < \infty,$$

which gives the result because $u(y) \leq u(x_0) < \infty$ and $u(y) \geq U(y) > -\infty$.

Exercise 12.2 (Utility in a complete market) Consider a financial market modelled by an \mathbb{R}^d -valued semimartingale S satisfying NFLVR. Let $U : (0, \infty) \to \mathbb{R}$ be a utility function such that $u(x_0) < \infty$ for some $x_0 \in (0, \infty)$.

(a) Assume that the market is complete in the sense that there exists a unique $E\sigma MM \ Q$ on \mathcal{F}_T . Assume furthermore that \mathcal{F}_0 is trivial and fix z > 0. Show that $h \leq z \frac{\mathrm{d}Q}{\mathrm{d}P}$ *P*-a.s. for all $h \in \mathcal{D}(z)$, and deduce that

$$j(z) = E\left[J\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right].$$

(b) Consider the Black–Scholes market $(\tilde{S}^0, \tilde{S}^1)$ given by

$$\begin{split} \mathrm{d} \tilde{S}_{0}^{0} &= r \tilde{S}_{t}^{0} \, \mathrm{d} t, & \tilde{S}_{0}^{0} &= 1, \\ \mathrm{d} \tilde{S}_{t}^{1} &= \tilde{S}_{t}^{1} (\mu \, \mathrm{d} t + \sigma \, \mathrm{d} W_{t}), & \tilde{S}_{0}^{1} &= s > 0. \end{split}$$

Let $U: (0, \infty) \to \mathbb{R}$ be defined by $U(x) := \frac{1}{\gamma} x^{\gamma}$, where $\gamma \in (-\infty, 1) \setminus \{0\}$. Show that for z > 0,

$$j(z) = \frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} \exp\left(\frac{1}{2} \frac{\gamma}{(1-\gamma)^2} \frac{(\mu-r)^2 T}{\sigma^2}\right).$$

Solution 12.2

Updated: December 13, 2023

(a) Recall that in general, a payoff $H \in L^0_+(\mathcal{F}_T)$ is attainable if and only if the supremum

$$\sup_{Q^0 \in \mathbb{P}_{\mathbf{e},\sigma}} E_{Q^0}[H]$$

is finite and attained at some $Q^* \in \mathbb{P}_{e,\sigma}$. In our setting, $\mathbb{P}_{e,\sigma}$ is the singleton set $\{Q\}$, so that a payoff $H \in L^0_+(\mathcal{F}_T)$ is attainable if and only if $E_Q[H] < \infty$, i.e. if and only if $H \in L^1_+(Q, \mathcal{F}_T)$.

Now we recall that

$$\mathcal{D}(z) := \{ h \in L^0_+(\mathcal{F}_T) : \exists Z \in \mathcal{Z}(z) \text{ with } h \leqslant Z_T \}.$$

So take $h \in \mathcal{D}(z)$ and suppose for contradiction that we do not have $h \leq z \frac{dQ}{dP}$ *P*-a.s. Then setting $A := \{h > z \frac{dQ}{dP}\}$, we have P[A] > 0. Now define the process $M = (M_t)_{0 \leq t \leq T}$ by

$$M_t := E_Q[\mathbf{1}_A \mid \mathcal{F}_t].$$

Then M is a nonnegative Q-martingale with $M_0 = Q[A] > 0$ because $Q \approx P$. Since $E_Q[M_T] \leq 1 < \infty$, it follows that $M_T \in L^0_+(\mathcal{F}_T)$ is attainable so that there exists some $\vartheta \in \Theta_{\text{adm}}$ with

$$M = M_0 + G(\vartheta).$$

Since M is nonnegative, we must have $\vartheta \in \Theta_{\text{adm}}^{M_0}$ and hence $M \in \mathcal{V}(M_0)$.

Now, since $h \in \mathcal{D}(z)$, there exists $Z \in \mathcal{Z}(z)$ such that $h \leq Z_T$. By the definition of $\mathcal{Z}(z)$, the product ZM is a *P*-supermartingale. We thus have

$$E[hM_T] \leqslant E[Z_TM_T] \leqslant E[Z_0M_0] = zM_0.$$

Also, we have $E[z\frac{\mathrm{d}Q}{\mathrm{d}P}M_T] = E_Q[zM_T] = zM_0$, and thus

$$E\left[\left(h-z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)M_T\right]\leqslant 0.$$

But recalling $M_T = \mathbf{1}_A$ and P[A] > 0 gives

$$E\left[\left(h-z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)M_T\right] > 0,$$

which gives a contradiction. Hence we must have $h \leq z \frac{dQ}{dP}$ *P*-a.s., as required. In particular, as any $Z_T \in \mathcal{D}(z)$ for $Z \in \mathcal{Z}(z)$, this gives $Z_T \leq z \frac{dQ}{dP}$ for any $Z \in \mathcal{Z}(z)$.

It remains to show $j(z) = E[J(z\frac{dQ}{dP})]$. First we recall

$$j(z) := \inf_{Z \in \mathcal{Z}(z)} E[J(Z_T)]$$

Updated: December 13, 2023

For each $Z \in \mathcal{Z}(z)$ we have $Z_T \leq z \frac{\mathrm{d}Q}{\mathrm{d}P}$. As J is decreasing, we have

$$J(Z_T) \geqslant J\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right),$$

and thus

$$E[J(Z_T)] \ge E\left[J\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right].$$

Taking the infimum over all $Z \in \mathcal{Z}(z)$ gives

$$j(z) \ge E\left[J\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right].$$

As $z \frac{\mathrm{d}Q}{\mathrm{d}P} \in \mathcal{Z}(z)$, this concludes the proof.

(b) In the Black–Scholes model, there exists a unique EMM Q, and thus part (a) is applicable. We hence have

$$j(z) = E\left[J\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right].$$

To compute this, we start by writing

$$J(y) = \sup_{x>0} \left(U(x) - xy \right) = \sup_{x>0} \left(\frac{1}{\gamma} x^{\gamma} - xy \right).$$

Taking the derivative of $\frac{1}{\gamma}x^{\gamma} - xy$ with respect to x and setting it equal to zero, we get $x = y^{\frac{1}{\gamma-1}}$, and hence

$$J(y) = \frac{1}{\gamma} y^{\frac{\gamma}{\gamma-1}} - y^{\frac{\gamma}{\gamma-1}} = \frac{1-\gamma}{\gamma} y^{\frac{\gamma}{\gamma-1}}.$$

We also recall that in the Black–Scholes model,

$$\frac{\mathrm{d}Q}{\mathrm{d}P} = \mathcal{E}(-\lambda W)_T,$$

where $\lambda := \frac{\mu - r}{\sigma}$. So we have

$$\begin{split} j(z) &= E\left[J\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right] \\ &= \frac{1-\gamma}{\gamma}E\left[\mathcal{E}(-\lambda W)_T^{\frac{\gamma}{\gamma-1}}\right] \\ &= \frac{1-\gamma}{\gamma}z^{\frac{\gamma}{\gamma-1}}E\left[\exp\left(\frac{\lambda\gamma}{1-\gamma}W_T + \frac{1}{2}\frac{\lambda^2\gamma}{1-\gamma}T\right)\right] \\ &= \frac{1-\gamma}{\gamma}z^{\frac{\gamma}{\gamma-1}}\exp\left(\frac{1}{2}\frac{\lambda^2\gamma}{(1-\gamma)^2}T\right)E\left[\mathcal{E}\left(\frac{\lambda\gamma}{1-\gamma}W\right)_T\right] \\ &= \frac{1-\gamma}{\gamma}z^{\frac{\gamma}{\gamma-1}}\exp\left(\frac{1}{2}\frac{\lambda^2\gamma}{(1-\gamma)^2}T\right), \end{split}$$

Updated: December 13, 2023

4/5

where in the last step we use that $\mathcal{E}(aW)$ is a *P*-martingale for each $a \in \mathbb{R}$. Substituting $\lambda = \frac{\mu - r}{\sigma}$ then gives the result.

Exercise 12.3 (Utility in a market with arbitrage) Consider a general market with finite time horizon T. Let $U : (0, \infty) \to \mathbb{R}$ be an increasing and concave utility function. Suppose that U is unbounded from above and that either the market admits a 0-admissible arbitrage opportunity, or we are in finite discrete time and the market admits an (admissible) arbitrage opportunity. Show that in both cases, we have $u \equiv \infty$.

Without imposing that U is unbounded from above, what can you say about the relationship between u(x) and U(x) as $x \to \infty$?

Solution 12.3 By assumption, there exists $\vartheta \in \Theta_{\text{adm}}$ such that $G_T(\vartheta) \ge 0$ *P*-a.s. and $P[G_T(\vartheta) > 0] > 0$. By Exercise 4.2, we may assume that ϑ is 0-admissible, and so also $n\vartheta$ is 0-admissible for each $n \in \mathbb{N}$. It follows that $x + nG_T(\vartheta) \in \mathcal{V}(x)$ for every x > 0 and $n \in \mathbb{N}$. So setting $A := \{G_T(\vartheta) > 0\}$, we have that for all x > 0and $n \in \mathbb{N}$,

$$u(x) \ge E\Big[U\Big(x + nG_T(\vartheta)\Big)\Big] = E\Big[U\Big(x + nG_T(\vartheta)\Big)\mathbf{1}_A\Big] + E\Big[U(x)\mathbf{1}_{A^c}\Big].$$

As U is increasing, we can let $n \to \infty$ and apply the monotone convergence theorem to get that for all x > 0,

$$u(x) \ge E[U(\infty)\mathbf{1}_A] + E[U(x)\mathbf{1}_{A^c}].$$

Note that U is increasing gives that the limit $U(\infty) := \lim_{x\to\infty} U(x) \in \mathbb{R} \cup \{\infty\}$ exists. Since U is unbounded from above we have $U(\infty) = \infty$, and as P[A] > 0, we can conclude that $u \equiv \infty$, as required.

Now suppose that U is not necessarily unbounded from above. We still have

$$u(x) \ge E\left[U(\infty)\mathbf{1}_A\right] + E\left[U(x)\mathbf{1}_{A^c}\right] = U(\infty)P[A] + U(x)P[A^c].$$

Also, by the definition of $u, u(x) \leq U(\infty)$ as U is increasing. So for each x > 0,

$$U(\infty)P[A] + U(x)P[A^c] \le u(x) \le U(\infty).$$

Letting $x \to \infty$ in the above gives $u(\infty) = U(\infty)$. This completes the problem.

Updated: December 13, 2023