Mathematical Finance

Exercise Sheet 13

Submit by 12:00 on Wednesday, December 27 via the course homepage.

Exercise 13.1 (Utility in a complete market) Consider a financial market modelled by an \mathbb{R}^d -valued semimartingale S satisfying NFLVR. Let $U:(0,\infty)\to\mathbb{R}$ be a utility function such that $u(x)<\infty$ for some (and hence for all) $x\in(0,\infty)$. Assume that the market is complete in the sense that there exists a unique $E\sigma MM$ Q on \mathcal{F}_T . Assume furthermore that \mathcal{F}_0 is trivial.

(a) Let $z_0 := \inf\{z > 0 : j(z) < \infty\}$. Show that the function j defined in the lecture notes is in $C^1((z_0, \infty); \mathbb{R})$ and satisfies

$$j'(z) = E\left[\frac{\mathrm{d}Q}{\mathrm{d}P}J'\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right], \quad z \in (z_0, \infty).$$

(b) Set $x_0 := \lim_{z \downarrow z_0} (-j'(z))$ and fix $x \in (0, x_0)$. Let $z_x \in (z_0, \infty)$ be the unique number such that $-j'(z_x) = x$. Show that $f^* := I(z_x \frac{dQ}{dP})$ is the unique solution to the primal problem

$$u(x) = \sup_{f \in \mathcal{C}(x)} E[U(f)].$$

Exercise 13.2 (The Merton problem) Consider the Black-Scholes market given by

$$d\tilde{S}_{0}^{0} = r\tilde{S}_{t}^{0} dt, \qquad \tilde{S}_{0}^{0} = 1,$$

$$d\tilde{S}_{t}^{1} = \tilde{S}_{t}^{1} (\mu dt + \sigma dW_{t}), \quad \tilde{S}_{0}^{1} = s > 0.$$

Let $U:(0,\infty)\to\mathbb{R}$ be defined by $U(x)=\frac{1}{\gamma}x^{\gamma}$, where $\gamma\in(-\infty,1)\setminus\{0\}$. Recall from Exercise 12.2(b) that

$$j(z) = \frac{1 - \gamma}{\gamma} z^{-\frac{\gamma}{1 - \gamma}} \exp\left(\frac{1}{2} \frac{\gamma}{(1 - \gamma)^2} \frac{(\mu - r)^2}{\sigma^2} T\right), \quad z \in (0, \infty).$$

We consider the *Merton problem* of maximising expected utility from final wealth (in units of \tilde{S}^0).

(a) Show that the unique solution to the primal problem

$$u(x) = \sup_{f \in \mathcal{C}(x)} E[U(f)], \quad x \in (0, \infty),$$

Updated: December 19, 2023

is given by $f_x^* := x \mathcal{E}(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R)_T$, where the process $R = (R_t)_{0 \le t \le T}$ is defined by $R_t = W_t + \frac{\mu-r}{\sigma} t$.

(b) Deduce that $f_x^* = V_T(x, \vartheta^x)$, where the integrand $\vartheta^x = (\vartheta_t^x)_{0 \leqslant t \leqslant T}$ is given by

$$\vartheta_t^x = \frac{x}{S_t^1} \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma^2} \mathcal{E} \left(\frac{1}{1 - \gamma} \frac{\mu - r}{\sigma} R \right)_t, \quad x \in (0, \infty),$$

and show that

$$u(x) = \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2} \frac{\gamma}{1 - \gamma} \frac{(\mu - r)^2}{\sigma^2} T\right), \quad x \in (0, \infty).$$

(c) For any x-admissible ϑ with $V(x,\vartheta) > 0$, denote by

$$\pi_t := \frac{\vartheta_t S_t^1}{V_t(x, \vartheta)}$$

the fraction of wealth that is invested in the stock. Show that the optimal strategy ϑ^x is given by the *Merton proportion*

$$\pi_t^* = \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma^2}.$$

Exercise 13.3 $(\frac{d\hat{P}}{dP} \text{ has moments of all orders})$ Let S be a continuous real-valued semimartingale satisfying the structure condition (SC), i.e. there exist a continuous local martingale M null at zero and a predictable process λ such that

$$S = S_0 + M + \int \lambda \, \mathrm{d}\langle M \rangle,$$

and with the mean-variance tradeoff process $K = \int \lambda^2 d\langle M \rangle$ bounded. Now define $\hat{Z} := \mathcal{E}(-\lambda \bullet M)$ and $\frac{d\hat{P}}{dP} := \hat{Z}_T$.

- (a) Show that $\hat{P} \in \mathbb{P}_{e,loc}(S)$.
- (b) Show that both $\frac{d\hat{P}}{dP}$ and $\frac{dP}{d\hat{P}}$ have moments of all orders.