Mathematical Finance
 Exercise Sheet 13

Submit by 12:00 on Wednesday, December 27 via the course homepage.

Exercise 13.1 (Utility in a complete market) Consider a financial market modelled by an \mathbb{R}^{d}-valued semimartingale S satisfying NFLVR. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be a utility function such that $u(x)<\infty$ for some (and hence for all) $x \in(0, \infty)$. Assume that the market is complete in the sense that there exists a unique $\operatorname{E} \sigma \mathrm{MM} Q$ on \mathcal{F}_{T}. Assume furthermore that \mathcal{F}_{0} is trivial.
(a) Let $z_{0}:=\inf \{z>0: j(z)<\infty\}$. Show that the function j defined in the lecture notes is in $C^{1}\left(\left(z_{0}, \infty\right) ; \mathbb{R}\right)$ and satisfies

$$
j^{\prime}(z)=E\left[\frac{\mathrm{~d} Q}{\mathrm{~d} P} J^{\prime}\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)\right], \quad z \in\left(z_{0}, \infty\right)
$$

(b) Set $x_{0}:=\lim _{z \downarrow z_{0}}\left(-j^{\prime}(z)\right)$ and fix $x \in\left(0, x_{0}\right)$. Let $z_{x} \in\left(z_{0}, \infty\right)$ be the unique number such that $-j^{\prime}\left(z_{x}\right)=x$. Show that $f^{*}:=I\left(z_{x} \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)$ is the unique solution to the primal problem

$$
u(x)=\sup _{f \in \mathcal{C}(x)} E[U(f)] .
$$

Solution 13.1 For notational convenience, we denote by $Z=\left(Z_{t}\right)_{0 \leqslant t \leqslant T}$ the density process of Q with respect to P, so that $Z_{T}=\frac{\mathrm{d} Q}{\mathrm{~d} P}$.
(a) Note that $0 \leqslant z_{0}<\infty$ by Theorem 12.4, and also by Theorem 12.4, we have that $j(z)<\infty$ for $z \in\left(z_{0}, \infty\right)$.

Now recall that J is in C^{1} and strictly decreasing. We can thus define the function $g:\left(z_{0}, \infty\right) \rightarrow[-\infty, 0]$ by

$$
g(s)=E\left[Z_{T} J^{\prime}\left(s Z_{T}\right)\right] .
$$

Moreover, as J is also strictly convex, J^{\prime} is increasing, and thus g is also increasing since $Z_{T}>0$. As g is negative-valued, it follows from the dominated convergence theorem that if $g\left(s_{0}\right)>-\infty$ for some $s_{0}>z_{0}$, we have that g is continuous on $\left(s_{0}, \infty\right)$.

Next, since $\frac{\mathrm{d}}{\mathrm{ds} s} J\left(s Z_{T}\right)=Z_{T} J^{\prime}\left(s Z_{T}\right)$ by the chain rule, we have by the fundamental theorem of calculus that for $z_{0}<z_{1}<z_{2}<\infty$,

$$
J\left(z_{2} Z_{T}\right)-J\left(z_{1} Z_{T}\right)=\int_{z_{1}}^{z_{2}} Z_{T} J^{\prime}\left(s Z_{T}\right) \mathrm{d} s
$$

By Exercise 12.2(a), we know that $j(z)=E\left[J\left(z Z_{T}\right)\right]$. Thus taking expectations of both sides in the above gives

$$
j\left(z_{2}\right)-j\left(z_{1}\right)=E\left[\int_{z_{1}}^{z_{2}} Z_{T} J^{\prime}\left(s Z_{T}\right) \mathrm{d} s\right]=\int_{z_{1}}^{z_{2}} E\left[Z_{T} J^{\prime}\left(s Z_{T}\right)\right] \mathrm{d} s=\int_{z_{1}}^{z_{2}} g(s) \mathrm{d} s
$$

where the second step uses the Fubini-Tonelli theorem, keeping in mind that the integrand is strictly negative.

Note that by the definition of z_{0}, we have that $j\left(z_{2}\right)-j\left(z_{1}\right)$ is finite, and thus the function g is finite a.e. on $\left(z_{0}, \infty\right)$. From the above, we can conclude that g is continuous and finite on $\left(z_{0}, \infty\right)$. By dividing by $z_{2}-z_{1}$ and letting $z_{2} \rightarrow z_{1}$, we get that

$$
j^{\prime}(z)=E\left[Z_{T} J^{\prime}\left(z Z_{T}\right)\right]=g(z)
$$

as required. Now since g is continuous on $\left(z_{0}, \infty\right)$, we have $j \in C^{1}\left(\left(z_{0}, \infty\right) ; \mathbb{R}\right)$, completing the proof.
(b) Before establishing that f^{*} is a solution to the primal problem, we first need to check that $f^{*} \in \mathcal{C}(x)$. To this end, recall that $f \in \mathcal{C}(x)$ if and only if

$$
\sup _{h \in \mathcal{D}(1)} E[f h] \leqslant x .
$$

By Exercise 12.2(a), this is equivalent to

$$
E\left[f Z_{T}\right] \leqslant x
$$

Now by the definition of f^{*} and I, we have

$$
E\left[f^{*} Z_{T}\right]=E\left[I\left(z_{x} Z_{T}\right) Z_{T}\right]=E\left[-J^{\prime}\left(z_{x} Z_{T}\right) Z_{T}\right]
$$

Moreover, by part (a), we have $E\left[Z_{T} J^{\prime}\left(z_{x} Z_{T}\right)\right]=j^{\prime}\left(z_{x}\right)$, and since $-j^{\prime}\left(z_{x}\right)=x$ by definition of z_{x}, we have

$$
E\left[f^{*} Z_{T}\right]=x
$$

and thus in particular $f^{*} \in \mathcal{C}(x)$, as required.
Next, we establish that f^{*} is a solution to the primal problem. So fix $f \in \mathcal{C}(x)$. We need to show that $E\left[U\left(f^{*}\right)\right] \geqslant E[U(f)]$. We may thus assume without loss of generality that $E[U(f)]>-\infty$. Now since U is in C^{1} and strictly concave on $(0, \infty)$, and since $f^{*}>0 P$-a.s., we have

$$
U(f)-U\left(f^{*}\right) \leqslant U^{\prime}\left(f^{*}\right)\left(f-f^{*}\right)
$$

with strict inequality on the event $\left\{f \neq f^{*}\right\}$. Now note that

$$
U^{\prime}\left(f^{*}\right)=U^{\prime}\left(I\left(z_{x} Z_{T}\right)\right)=z_{x} Z_{T}
$$

Thus taking expectations of the above inequality yields

$$
E\left[U(f)-U\left(f^{*}\right)\right] \leqslant E\left[z_{x} Z_{T}\left(f-f^{*}\right)\right]
$$

and since $E\left[Z_{T} f^{*}\right]=x$ and $E\left[Z_{T} f\right] \leqslant x$ and $z_{x}>0$, we have

$$
E\left[U(f)-U\left(f^{*}\right)\right] \leqslant 0,
$$

and the inequality is strict when $P\left[f \neq f^{*}\right]>0$. It follows immediately that f^{*} is the unique solution to the primal problem. This completes the proof.

Exercise 13.2 (The Merton problem) Consider the Black-Scholes market given by

$$
\begin{array}{ll}
\mathrm{d} \tilde{S}_{0}^{0}=r \tilde{S}_{t}^{0} \mathrm{~d} t, & \tilde{S}_{0}^{0}=1, \\
\mathrm{~d} \tilde{S}_{t}^{1}=\tilde{S}_{t}^{1}\left(\mu \mathrm{~d} t+\sigma \mathrm{d} W_{t}\right), & \tilde{S}_{0}^{1}=s>0 .
\end{array}
$$

Let $U:(0, \infty) \rightarrow \mathbb{R}$ be defined by $U(x)=\frac{1}{\gamma} x^{\gamma}$, where $\gamma \in(-\infty, 1) \backslash\{0\}$. Recall from Exercise 12.2(b) that

$$
j(z)=\frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} \exp \left(\frac{1}{2} \frac{\gamma}{(1-\gamma)^{2}} \frac{(\mu-r)^{2}}{\sigma^{2}} T\right), \quad z \in(0, \infty)
$$

We consider the Merton problem of maximising expected utility from final wealth (in units of \widetilde{S}^{0}).
(a) Show that the unique solution to the primal problem

$$
u(x)=\sup _{f \in \mathcal{C}(x)} E[U(f)], \quad x \in(0, \infty)
$$

is given by $f_{x}^{*}:=x \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{T}$, where the process $R=\left(R_{t}\right)_{0 \leqslant t \leqslant T}$ is defined by $R_{t}=W_{t}+\frac{\mu-r}{\sigma} t$.
(b) Deduce that $f_{x}^{*}=V_{T}\left(x, \vartheta^{x}\right)$, where the integrand $\vartheta^{x}=\left(\vartheta_{t}^{x}\right)_{0 \leqslant t \leqslant T}$ is given by

$$
\vartheta_{t}^{x}=\frac{x}{S_{t}^{1}} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma^{2}} \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{t}, \quad x \in(0, \infty)
$$

and show that

$$
u(x)=\frac{x^{\gamma}}{\gamma} \exp \left(\frac{1}{2} \frac{\gamma}{1-\gamma} \frac{(\mu-r)^{2}}{\sigma^{2}} T\right), \quad x \in(0, \infty)
$$

(c) For any x-admissible ϑ with $V(x, \vartheta)>0$, denote by

$$
\pi_{t}:=\frac{\vartheta_{t} S_{t}^{1}}{V_{t}(x, \vartheta)}
$$

the fraction of wealth that is invested in the stock. Show that the optimal strategy ϑ^{x} is given by the Merton proportion

$$
\pi_{t}^{*}=\frac{1}{1-\gamma} \frac{\mu-r}{\sigma^{2}}
$$

Updated: December 19, 2023

Solution 13.2

(a) First, note that $j(z)<\infty$ for some $z \in(0, \infty)$ implies that

$$
u(x) \leqslant j(z)+z x<\infty, \quad x \in(0, \infty)
$$

In Exercise 12.2(b) we computed $J(z)=\frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}}$, and hence $J^{\prime}(z)=-z^{-\frac{1}{1-\gamma}}$.
Now fix $x>0$. With the same notation as in Exercise 13.1, we have

$$
\begin{aligned}
f_{x}^{*} & =-J^{\prime}\left(z_{x} \frac{d Q}{d P}\right)=z_{x}^{-\frac{1}{1-\gamma}}\left(\mathcal{E}(-\lambda W)_{T}\right)^{-\frac{1}{1-\gamma}} \\
& =-j^{\prime}\left(z_{x}\right) \exp \left(-\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right) \exp \left(\frac{\lambda}{1-\gamma} W_{T}+\frac{1}{2} \frac{\lambda^{2}}{1-\gamma} T\right) \\
& =x \exp \left(\frac{\lambda}{1-\gamma}\left(W_{T}+\lambda T\right)-\frac{1}{2} \frac{\lambda^{2}}{(1-\gamma)^{2}} T\right) \\
& =x \mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_{T} .
\end{aligned}
$$

This completes the proof.
(b) Fix $x>0$. By the definition of the stochastic exponential and using that $\lambda=\frac{\mu-r}{\sigma}$, we have

$$
\begin{aligned}
f_{x}^{*} & =x\left(1+\int_{0}^{T} \mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_{t} \frac{\lambda}{1-\gamma} \mathrm{d} R_{t}\right) \\
& =x+\int_{0}^{T} x \mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_{t} \frac{\lambda}{1-\gamma} \frac{1}{\sigma S_{t}^{1}} \mathrm{~d} S_{t}^{1} \\
& =x+\int_{0}^{T} x \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{t} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma} \frac{1}{\sigma S_{t}^{1}} \mathrm{~d} S_{t}^{1} \\
& =x+\int_{0}^{T} \frac{x}{S_{t}^{1}} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma^{2}} \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{t} \mathrm{~d} S_{t}^{1} .
\end{aligned}
$$

This gives the first claim. Now using again that $\mathcal{E}(a W)$ is a P-martingale for all $a \in \mathbb{R}$ and that $\lambda=\frac{\mu-r}{\sigma}$, we have

$$
\begin{aligned}
u(x) & =E\left[U\left(f_{x}^{*}\right)\right]=\frac{x^{\gamma}}{\gamma} E\left[\left(\mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_{T}\right)^{\gamma}\right] \\
& =\frac{x^{\gamma}}{\gamma} E\left[\exp \left(\frac{\lambda \gamma}{1-\gamma}\left(W_{T}+\lambda T\right)-\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right)\right] \\
& =\frac{x^{\gamma}}{\gamma} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{1-\gamma} T\right) E\left[\mathcal{E}\left(\frac{\lambda \gamma}{1-\gamma} W\right)_{T}\right] \\
& =\frac{x^{\gamma}}{\gamma} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{1-\gamma} T\right) \\
& =\frac{x^{\gamma}}{\gamma} \exp \left(\frac{1}{2} \frac{\gamma}{1-\gamma} \frac{(\mu-r)^{2}}{\sigma^{2}} T\right) .
\end{aligned}
$$

This completes the proof.
(c) By part (a) and since $\lambda=\frac{\mu-r}{\sigma}$, we have

$$
V_{t}\left(x, \vartheta^{x}\right)=x \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{t}
$$

and by part (b), we have

$$
\vartheta_{t}^{x}=\frac{x}{S_{t}^{1}} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma^{2}} \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{t}
$$

Therefore, we obtain directly that

$$
\pi_{t}^{*}:=\frac{\vartheta_{t}^{x} S_{t}^{1}}{V_{t}\left(x, \vartheta^{x}\right)}=\frac{1}{1-\gamma} \frac{\mu-r}{\sigma^{2}}
$$

This completes the proof.
 semimartingale satisfying the structure condition (SC), i.e. there exist a continuous local martingale M null at zero and a predictable process λ such that

$$
S=S_{0}+M+\int \lambda \mathrm{d}\langle M\rangle
$$

and with the mean-variance tradeoff process $K=\int \lambda^{2} \mathrm{~d}\langle M\rangle$ bounded. Now define $\hat{Z}:=\mathcal{E}(-\lambda \bullet M)$ and $\frac{\mathrm{d} \hat{P} P}{\mathrm{~d} P}:=\hat{Z}_{T}$.
(a) Show that $\hat{P} \in \mathbb{P}_{\mathrm{e}, \mathrm{loc}}(S)$.
(b) Show that both $\frac{\mathrm{d} \hat{P}}{\mathrm{~d} P}$ and $\frac{\mathrm{d} P}{\mathrm{~d} \hat{P}}$ have moments of all orders.

Solution 13.3

(a) We need to show that \hat{P} is an equivalent probability measure, and that S is a \hat{P}-local martingale. To this end, first note that since K is bounded, we have that

$$
E\left[\exp \left(\frac{1}{2}\langle-\lambda \bullet M\rangle_{T}\right)\right]=E\left[\exp \left(\frac{1}{2} K_{T}\right)\right]<\infty
$$

So by Novikov's condition, we can conclude that \hat{Z} is a martingale. As \hat{Z} is strictly positive, it follows that \hat{P} is an equivalent probability measure. It now remains to show that S is a \hat{P}-local martingale. To this end, we first apply the stochastic product rule to $\hat{Z} S$ and write

$$
\mathrm{d}(\hat{Z} S)=\hat{Z} \mathrm{~d} S+S \mathrm{~d} \hat{Z}+\mathrm{d}\langle\hat{Z}, S\rangle
$$

Then we use that S satisfies (SC) and that
$\mathrm{d} \hat{Z}=\mathrm{d} \mathcal{E}(-\lambda \bullet M)=\mathcal{E}(-\lambda \bullet M) \mathrm{d}(-\lambda \bullet M)=-\lambda \mathcal{E}(-\lambda \bullet M) \mathrm{d} M=-\lambda \hat{Z} \mathrm{~d} M$ to compute

$$
\begin{aligned}
\mathrm{d}(\hat{Z} S) & =\hat{Z} \mathrm{~d} M+\hat{Z} \lambda \mathrm{~d}\langle M\rangle-S \lambda \hat{Z} \mathrm{~d} M-\lambda \hat{Z} \mathrm{~d}\langle M\rangle \\
& =(\hat{Z}-S \lambda \hat{Z}) \mathrm{d} M .
\end{aligned}
$$

As \hat{Z}, S and M are continuous, it follows that $\hat{Z} S$ is a P-local martingale, so that S is a \hat{P}-local martingale, and hence $\hat{P} \in \mathbb{P}_{\mathrm{e}, \text { loc }}$, as required.
(b) We compute, for any $p \in \mathbb{R}$,

$$
\begin{aligned}
\hat{Z}_{T}^{p} & =\exp \left(-p \lambda \bullet M_{T}-\frac{1}{2} p \lambda^{2} \bullet\langle M\rangle_{T}\right) \\
& =\exp \left(-p \lambda \bullet M_{T}-\frac{1}{2} p^{2} \lambda^{2} \bullet\langle M\rangle_{T}\right) \exp \left(\frac{1}{2}\left(p^{2}-p\right) \lambda^{2} \bullet\langle M\rangle_{T}\right) \\
& =\mathcal{E}(-p \lambda \bullet M)_{T} \exp \left(\left(p^{2}-p\right) K_{T}\right)
\end{aligned}
$$

So letting $C<\infty$ be a bound on K, we can write

$$
E\left[\hat{Z}_{T}^{p}\right] \leqslant E\left[\mathcal{E}(-p \lambda \bullet M)_{T}\right] \exp \left(C\left|p^{2}-p\right|\right) \leqslant \exp \left(C\left|p^{2}-p\right|\right)<\infty
$$

since $\mathcal{E}(-p \lambda \bullet M)$ is a supermartingale. As $Z_{T}=\frac{\mathrm{d} \hat{P}}{\mathrm{~d} P}$ and $Z_{T}^{-1}=\frac{\mathrm{d} P}{\mathrm{~d} \hat{P}}$, this completes the proof.

