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Exercise 13.1 (Utility in a complete market) Consider a financial market modelled
by an Rd-valued semimartingale S satisfying NFLVR. Let U : (0, ∞) → R be a
utility function such that u(x) < ∞ for some (and hence for all) x ∈ (0, ∞). Assume
that the market is complete in the sense that there exists a unique EσMM Q on FT .
Assume furthermore that F0 is trivial.

(a) Let z0 := inf{z > 0 : j(z) < ∞}. Show that the function j defined in the
lecture notes is in C1((z0, ∞);R) and satisfies

j′(z) = E

[
dQ

dP
J ′
(

z
dQ

dP

)]
, z ∈ (z0, ∞).

(b) Set x0 := limz↓z0(−j′(z)) and fix x ∈ (0, x0). Let zx ∈ (z0, ∞) be the unique
number such that −j′(zx) = x. Show that f ∗ := I(zx

dQ
dP

) is the unique solution
to the primal problem

u(x) = sup
f∈C(x)

E[U(f)].

Solution 13.1 For notational convenience, we denote by Z = (Zt)0⩽t⩽T the density
process of Q with respect to P , so that ZT = dQ

dP
.

(a) Note that 0 ⩽ z0 < ∞ by Theorem 12.4, and also by Theorem 12.4, we have
that j(z) < ∞ for z ∈ (z0, ∞).

Now recall that J is in C1 and strictly decreasing. We can thus define the
function g : (z0, ∞) → [−∞, 0] by

g(s) = E[ZT J ′(sZT )].

Moreover, as J is also strictly convex, J ′ is increasing, and thus g is also
increasing since ZT > 0. As g is negative-valued, it follows from the dominated
convergence theorem that if g(s0) > −∞ for some s0 > z0, we have that g is
continuous on (s0, ∞).

Next, since d
ds

J(sZT ) = ZT J ′(sZT ) by the chain rule, we have by the funda-
mental theorem of calculus that for z0 < z1 < z2 < ∞,

J(z2ZT ) − J(z1ZT ) =
∫ z2

z1
ZT J ′(sZT ) ds.
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By Exercise 12.2(a), we know that j(z) = E[J(zZT )]. Thus taking expectations
of both sides in the above gives

j(z2) − j(z1) = E
[∫ z2

z1
ZT J ′(sZT ) ds

]
=
∫ z2

z1
E[ZT J ′(sZT )] ds =

∫ z2

z1
g(s) ds,

where the second step uses the Fubini–Tonelli theorem, keeping in mind that
the integrand is strictly negative.

Note that by the definition of z0, we have that j(z2) − j(z1) is finite, and thus
the function g is finite a.e. on (z0, ∞). From the above, we can conclude that g
is continuous and finite on (z0, ∞). By dividing by z2 − z1 and letting z2 → z1,
we get that

j′(z) = E[ZT J ′(zZT )] = g(z)

as required. Now since g is continuous on (z0, ∞), we have j ∈ C1((z0, ∞);R),
completing the proof.

(b) Before establishing that f ∗ is a solution to the primal problem, we first need
to check that f ∗ ∈ C(x). To this end, recall that f ∈ C(x) if and only if

sup
h∈D(1)

E[fh] ⩽ x.

By Exercise 12.2(a), this is equivalent to

E[fZT ] ⩽ x.

Now by the definition of f ∗ and I, we have

E[f ∗ZT ] = E[I(zxZT )ZT ] = E[−J ′(zxZT )ZT ].

Moreover, by part (a), we have E[ZT J ′(zxZT )] = j′(zx), and since −j′(zx) = x
by definition of zx, we have

E[f ∗ZT ] = x

and thus in particular f ∗ ∈ C(x), as required.

Next, we establish that f ∗ is a solution to the primal problem. So fix f ∈ C(x).
We need to show that E[U(f ∗)] ⩾ E[U(f)]. We may thus assume without loss
of generality that E[U(f)] > −∞. Now since U is in C1 and strictly concave
on (0, ∞), and since f ∗ > 0 P -a.s., we have

U(f) − U(f ∗) ⩽ U ′(f ∗)(f − f ∗),

with strict inequality on the event {f ̸= f ∗}. Now note that

U ′(f ∗) = U ′
(
I(zxZT )

)
= zxZT .
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Thus taking expectations of the above inequality yields
E
[
U(f) − U(f ∗)

]
⩽ E

[
zxZT (f − f ∗)

]
,

and since E[ZT f ∗] = x and E[ZT f ] ⩽ x and zx > 0, we have
E[U(f) − U(f ∗)] ⩽ 0,

and the inequality is strict when P [f ̸= f ∗] > 0. It follows immediately that
f ∗ is the unique solution to the primal problem. This completes the proof.

Exercise 13.2 (The Merton problem) Consider the Black–Scholes market given
by

dS̃0
0 = rS̃0

t dt, S̃0
0 = 1,

dS̃1
t = S̃1

t (µ dt + σ dWt), S̃1
0 = s > 0.

Let U : (0, ∞) → R be defined by U(x) = 1
γ
xγ , where γ ∈ (−∞, 1)\{0}. Recall from

Exercise 12.2(b) that

j(z) = 1 − γ

γ
z− γ

1−γ exp
(

1
2

γ

(1 − γ)2
(µ − r)2

σ2 T

)
, z ∈ (0, ∞).

We consider the Merton problem of maximising expected utility from final wealth (in
units of S̃0).

(a) Show that the unique solution to the primal problem
u(x) = sup

f∈C(x)
E[U(f)], x ∈ (0, ∞),

is given by f ∗
x := xE( 1

1−γ
µ−r

σ
R)T , where the process R = (Rt)0⩽t⩽T is defined

by Rt = Wt + µ−r
σ

t.

(b) Deduce that f ∗
x = VT (x, ϑx), where the integrand ϑx = (ϑx

t )0⩽t⩽T is given by

ϑx
t = x

S1
t

1
1 − γ

µ − r

σ2 E
(

1
1 − γ

µ − r

σ
R

)
t

, x ∈ (0, ∞),

and show that

u(x) = xγ

γ
exp

(
1
2

γ

1 − γ

(µ − r)2

σ2 T

)
, x ∈ (0, ∞).

(c) For any x-admissible ϑ with V (x, ϑ) > 0, denote by

πt := ϑtS
1
t

Vt(x, ϑ)
the fraction of wealth that is invested in the stock. Show that the optimal
strategy ϑx is given by the Merton proportion

π∗
t = 1

1 − γ

µ − r

σ2 .
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Solution 13.2

(a) First, note that j(z) < ∞ for some z ∈ (0, ∞) implies that
u(x) ⩽ j(z) + zx < ∞, x ∈ (0, ∞).

In Exercise 12.2(b) we computed J(z) = 1−γ
γ

z− γ
1−γ , and hence J ′(z) = −z− 1

1−γ .
Now fix x > 0. With the same notation as in Exercise 13.1, we have

f ∗
x = −J ′

(
zx

dQ

dP

)
= z

− 1
1−γ

x

(
E(−λW )T

)− 1
1−γ

= −j′(zx) exp
(

−1
2

λ2γ

(1 − γ)2 T

)
exp

(
λ

1 − γ
WT + 1

2
λ2

1 − γ
T

)

= x exp
(

λ

1 − γ
(WT + λT ) − 1

2
λ2

(1 − γ)2 T

)

= xE
(

λ

1 − γ
R

)
T

.

This completes the proof.

(b) Fix x > 0. By the definition of the stochastic exponential and using that
λ = µ−r

σ
, we have

f ∗
x = x

(
1 +

∫ T

0
E
(

λ

1 − γ
R

)
t

λ

1 − γ
dRt

)

= x +
∫ T

0
xE

(
λ

1 − γ
R

)
t

λ

1 − γ

1
σS1

t

dS1
t

= x +
∫ T

0
xE

(
1

1 − γ

µ − r

σ
R

)
t

1
1 − γ

µ − r

σ

1
σS1

t

dS1
t

= x +
∫ T

0

x

S1
t

1
1 − γ

µ − r

σ2 E
(

1
1 − γ

µ − r

σ
R

)
t

dS1
t .

This gives the first claim. Now using again that E(aW ) is a P -martingale for
all a ∈ R and that λ = µ−r

σ
, we have

u(x) = E [U(f ∗
x)] = xγ

γ
E

[(
E
(

λ

1 − γ
R
)

T

)γ]

= xγ

γ
E

[
exp

(
λγ

1 − γ
(WT + λT ) − 1

2
λ2γ

(1 − γ)2 T

)]

= xγ

γ
exp

(
1
2

λ2γ

1 − γ
T

)
E

[
E
(

λγ

1 − γ
W

)
T

]

= xγ

γ
exp

(
1
2

λ2γ

1 − γ
T

)

= xγ

γ
exp

(
1
2

γ

1 − γ

(µ − r)2

σ2 T

)
.
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This completes the proof.

(c) By part (a) and since λ = µ−r
σ

, we have

Vt(x, ϑx) = xE
(

1
1 − γ

µ − r

σ
R

)
t

,

and by part (b), we have

ϑx
t = x

S1
t

1
1 − γ

µ − r

σ2 E
(

1
1 − γ

µ − r

σ
R

)
t

.

Therefore, we obtain directly that

π∗
t := ϑx

t S1
t

Vt(x, ϑx) = 1
1 − γ

µ − r

σ2 .

This completes the proof.

Exercise 13.3 ( dP̂
dP

has moments of all orders) Let S be a continuous real-valued
semimartingale satisfying the structure condition (SC), i.e. there exist a continuous
local martingale M null at zero and a predictable process λ such that

S = S0 + M +
∫

λ d⟨M⟩,

and with the mean-variance tradeoff process K =
∫

λ2 d⟨M⟩ bounded. Now define
Ẑ := E(−λ • M) and dP̂

dP
:= ẐT .

(a) Show that P̂ ∈ Pe,loc(S).

(b) Show that both dP̂
dP

and dP
dP̂

have moments of all orders.

Solution 13.3

(a) We need to show that P̂ is an equivalent probability measure, and that S is a
P̂ -local martingale. To this end, first note that since K is bounded, we have
that

E
[
exp

(1
2⟨−λ • M⟩T

)]
= E

[
exp

(1
2KT

)]
< ∞.

So by Novikov’s condition, we can conclude that Ẑ is a martingale. As Ẑ is
strictly positive, it follows that P̂ is an equivalent probability measure. It now
remains to show that S is a P̂ -local martingale. To this end, we first apply the
stochastic product rule to ẐS and write

d(ẐS) = Ẑ dS + S dẐ + d⟨Ẑ, S⟩.
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Then we use that S satisfies (SC) and that

dẐ = dE(−λ • M) = E(−λ • M) d(−λ • M) = −λE(−λ • M) dM = −λẐ dM

to compute

d(ẐS) = Ẑ dM + Ẑλ d⟨M⟩ − SλẐ dM − λẐ d ⟨M⟩
= (Ẑ − SλẐ) dM.

As Ẑ, S and M are continuous, it follows that ẐS is a P -local martingale, so
that S is a P̂ -local martingale, and hence P̂ ∈ Pe,loc, as required.

(b) We compute, for any p ∈ R,

Ẑp
T = exp

(
− pλ • MT − 1

2pλ2 • ⟨M⟩T

)

= exp
(

− pλ • MT − 1
2p2λ2 • ⟨M⟩T

)
exp

(
1
2(p2 − p)λ2 • ⟨M⟩T

)
= E(−pλ • M)T exp

(
(p2 − p)KT

)
.

So letting C < ∞ be a bound on K, we can write

E[Ẑp
T ] ⩽ E[E(−pλ • M)T ] exp(C|p2 − p|) ⩽ exp(C|p2 − p|) < ∞,

since E(−pλ • M) is a supermartingale. As ZT = dP̂
dP

and Z−1
T = dP

dP̂
, this

completes the proof.
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