Mathematical Finance Exercise Sheet 13

Submit by 12:00 on Wednesday, December 27 via the course homepage.

Exercise 13.1 (Utility in a complete market) Consider a financial market modelled by an \mathbb{R}^d -valued semimartingale S satisfying NFLVR. Let $U : (0, \infty) \to \mathbb{R}$ be a utility function such that $u(x) < \infty$ for some (and hence for all) $x \in (0, \infty)$. Assume that the market is complete in the sense that there exists a unique $\mathbb{E}\sigma MM Q$ on \mathcal{F}_T . Assume furthermore that \mathcal{F}_0 is trivial.

(a) Let $z_0 := \inf\{z > 0 : j(z) < \infty\}$. Show that the function j defined in the lecture notes is in $C^1((z_0, \infty); \mathbb{R})$ and satisfies

$$j'(z) = E\left[\frac{\mathrm{d}Q}{\mathrm{d}P}J'\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right], \quad z \in (z_0,\infty).$$

(b) Set $x_0 := \lim_{z \downarrow z_0} (-j'(z))$ and fix $x \in (0, x_0)$. Let $z_x \in (z_0, \infty)$ be the unique number such that $-j'(z_x) = x$. Show that $f^* := I(z_x \frac{\mathrm{d}Q}{\mathrm{d}P})$ is the unique solution to the primal problem

$$u(x) = \sup_{f \in \mathcal{C}(x)} E[U(f)].$$

Solution 13.1 For notational convenience, we denote by $Z = (Z_t)_{0 \le t \le T}$ the density process of Q with respect to P, so that $Z_T = \frac{dQ}{dP}$.

(a) Note that $0 \leq z_0 < \infty$ by Theorem 12.4, and also by Theorem 12.4, we have that $j(z) < \infty$ for $z \in (z_0, \infty)$.

Now recall that J is in C^1 and strictly decreasing. We can thus define the function $g: (z_0, \infty) \to [-\infty, 0]$ by

$$g(s) = E[Z_T J'(sZ_T)].$$

Moreover, as J is also strictly convex, J' is increasing, and thus g is also increasing since $Z_T > 0$. As g is negative-valued, it follows from the dominated convergence theorem that if $g(s_0) > -\infty$ for some $s_0 > z_0$, we have that g is continuous on (s_0, ∞) .

Next, since $\frac{d}{ds}J(sZ_T) = Z_TJ'(sZ_T)$ by the chain rule, we have by the fundamental theorem of calculus that for $z_0 < z_1 < z_2 < \infty$,

$$J(z_2 Z_T) - J(z_1 Z_T) = \int_{z_1}^{z_2} Z_T J'(s Z_T) \, \mathrm{d}s.$$

Updated: December 19, 2023

By Exercise 12.2(a), we know that $j(z) = E[J(zZ_T)]$. Thus taking expectations of both sides in the above gives

$$j(z_2) - j(z_1) = E\left[\int_{z_1}^{z_2} Z_T J'(sZ_T) \,\mathrm{d}s\right] = \int_{z_1}^{z_2} E[Z_T J'(sZ_T)] \,\mathrm{d}s = \int_{z_1}^{z_2} g(s) \,\mathrm{d}s,$$

where the second step uses the Fubini–Tonelli theorem, keeping in mind that the integrand is strictly negative.

Note that by the definition of z_0 , we have that $j(z_2) - j(z_1)$ is finite, and thus the function g is finite a.e. on (z_0, ∞) . From the above, we can conclude that gis continuous and finite on (z_0, ∞) . By dividing by $z_2 - z_1$ and letting $z_2 \to z_1$, we get that

$$j'(z) = E[Z_T J'(zZ_T)] = g(z)$$

as required. Now since g is continuous on (z_0, ∞) , we have $j \in C^1((z_0, \infty); \mathbb{R})$, completing the proof.

(b) Before establishing that f^* is a solution to the primal problem, we first need to check that $f^* \in \mathcal{C}(x)$. To this end, recall that $f \in \mathcal{C}(x)$ if and only if

$$\sup_{h \in \mathcal{D}(1)} E[fh] \leqslant x.$$

By Exercise 12.2(a), this is equivalent to

 $E[fZ_T] \leq x.$

Now by the definition of f^* and I, we have

$$E[f^*Z_T] = E[I(z_x Z_T) Z_T] = E[-J'(z_x Z_T) Z_T].$$

Moreover, by part (a), we have $E[Z_T J'(z_x Z_T)] = j'(z_x)$, and since $-j'(z_x) = x$ by definition of z_x , we have

$$E[f^*Z_T] = x$$

and thus in particular $f^* \in \mathcal{C}(x)$, as required.

Next, we establish that f^* is a solution to the primal problem. So fix $f \in \mathcal{C}(x)$. We need to show that $E[U(f^*)] \ge E[U(f)]$. We may thus assume without loss of generality that $E[U(f)] > -\infty$. Now since U is in C^1 and strictly concave on $(0, \infty)$, and since $f^* > 0$ P-a.s., we have

$$U(f) - U(f^*) \leq U'(f^*)(f - f^*),$$

with strict inequality on the event $\{f \neq f^*\}$. Now note that

$$U'(f^*) = U'(I(z_x Z_T)) = z_x Z_T.$$

Updated: December 19, 2023

Thus taking expectations of the above inequality yields

$$E[U(f) - U(f^*)] \leqslant E[z_x Z_T(f - f^*)],$$

and since $E[Z_T f^*] = x$ and $E[Z_T f] \leqslant x$ and $z_x > 0$, we have
 $E[U(f) - U(f^*)] \leqslant 0,$

and the inequality is strict when $P[f \neq f^*] > 0$. It follows immediately that f^* is the unique solution to the primal problem. This completes the proof.

Exercise 13.2 (*The Merton problem*) Consider the Black–Scholes market given by

$$\begin{split} \mathrm{d} \tilde{S}_{0}^{0} &= r \tilde{S}_{t}^{0} \, \mathrm{d} t, & \tilde{S}_{0}^{0} &= 1, \\ \mathrm{d} \tilde{S}_{t}^{1} &= \tilde{S}_{t}^{1} (\mu \, \mathrm{d} t + \sigma \, \mathrm{d} W_{t}), & \tilde{S}_{0}^{1} &= s > 0 \end{split}$$

Let $U: (0, \infty) \to \mathbb{R}$ be defined by $U(x) = \frac{1}{\gamma}x^{\gamma}$, where $\gamma \in (-\infty, 1) \setminus \{0\}$. Recall from Exercise 12.2(b) that

$$j(z) = \frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} \exp\left(\frac{1}{2} \frac{\gamma}{(1-\gamma)^2} \frac{(\mu-r)^2}{\sigma^2} T\right), \quad z \in (0,\infty).$$

We consider the *Merton problem* of maximising expected utility from final wealth (in units of \tilde{S}^0).

(a) Show that the unique solution to the primal problem

$$u(x) = \sup_{f \in \mathcal{C}(x)} E[U(f)], \quad x \in (0, \infty),$$

is given by $f_x^* := x \mathcal{E}(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R)_T$, where the process $R = (R_t)_{0 \leq t \leq T}$ is defined by $R_t = W_t + \frac{\mu-r}{\sigma} t$.

(b) Deduce that $f_x^* = V_T(x, \vartheta^x)$, where the integrand $\vartheta^x = (\vartheta_t^x)_{0 \le t \le T}$ is given by

$$\vartheta_t^x = \frac{x}{S_t^1} \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma^2} \mathcal{E}\left(\frac{1}{1 - \gamma} \frac{\mu - r}{\sigma} R\right)_t, \quad x \in (0, \infty),$$

and show that

$$u(x) = \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2}\frac{\gamma}{1-\gamma}\frac{(\mu-r)^2}{\sigma^2}T\right), \quad x \in (0,\infty).$$

(c) For any x-admissible ϑ with $V(x, \vartheta) > 0$, denote by

$$\pi_t := \frac{\vartheta_t S_t^1}{V_t(x,\vartheta)}$$

the fraction of wealth that is invested in the stock. Show that the optimal strategy ϑ^x is given by the *Merton proportion*

$$\pi_t^* = \frac{1}{1-\gamma} \frac{\mu - r}{\sigma^2}.$$

Updated: December 19, 2023

Solution 13.2

(a) First, note that $j(z) < \infty$ for some $z \in (0, \infty)$ implies that

$$u(x) \leq j(z) + zx < \infty, \quad x \in (0, \infty)$$

In Exercise 12.2(b) we computed $J(z) = \frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}}$, and hence $J'(z) = -z^{-\frac{1}{1-\gamma}}$. Now fix x > 0. With the same notation as in Exercise 13.1, we have

$$\begin{split} f_x^* &= -J'\left(z_x \frac{dQ}{dP}\right) = z_x^{-\frac{1}{1-\gamma}} \left(\mathcal{E}(-\lambda W)_T\right)^{-\frac{1}{1-\gamma}} \\ &= -j'(z_x) \exp\left(-\frac{1}{2} \frac{\lambda^2 \gamma}{(1-\gamma)^2} T\right) \exp\left(\frac{\lambda}{1-\gamma} W_T + \frac{1}{2} \frac{\lambda^2}{1-\gamma} T\right) \\ &= x \exp\left(\frac{\lambda}{1-\gamma} (W_T + \lambda T) - \frac{1}{2} \frac{\lambda^2}{(1-\gamma)^2} T\right) \\ &= x \mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_T. \end{split}$$

This completes the proof.

(b) Fix x > 0. By the definition of the stochastic exponential and using that $\lambda = \frac{\mu - r}{\sigma}$, we have

$$f_x^* = x \left(1 + \int_0^T \mathcal{E} \left(\frac{\lambda}{1 - \gamma} R \right)_t \frac{\lambda}{1 - \gamma} \, \mathrm{d}R_t \right)$$

$$= x + \int_0^T x \mathcal{E} \left(\frac{\lambda}{1 - \gamma} R \right)_t \frac{\lambda}{1 - \gamma} \frac{1}{\sigma S_t^1} \, \mathrm{d}S_t^1$$

$$= x + \int_0^T x \mathcal{E} \left(\frac{1}{1 - \gamma} \frac{\mu - r}{\sigma} R \right)_t \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma} \frac{1}{\sigma S_t^1} \, \mathrm{d}S_t^1$$

$$= x + \int_0^T \frac{x}{S_t^1} \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma^2} \mathcal{E} \left(\frac{1}{1 - \gamma} \frac{\mu - r}{\sigma} R \right)_t \, \mathrm{d}S_t^1.$$

This gives the first claim. Now using again that $\mathcal{E}(aW)$ is a *P*-martingale for all $a \in \mathbb{R}$ and that $\lambda = \frac{\mu - r}{\sigma}$, we have

$$\begin{split} u(x) &= E\left[U(f_x^*)\right] = \frac{x^{\gamma}}{\gamma} E\left[\left(\mathcal{E}\left(\frac{\lambda}{1-\gamma}R\right)_T\right)^{\gamma}\right] \\ &= \frac{x^{\gamma}}{\gamma} E\left[\exp\left(\frac{\lambda\gamma}{1-\gamma}(W_T+\lambda T) - \frac{1}{2}\frac{\lambda^2\gamma}{(1-\gamma)^2}T\right)\right] \\ &= \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2}\frac{\lambda^2\gamma}{1-\gamma}T\right) E\left[\mathcal{E}\left(\frac{\lambda\gamma}{1-\gamma}W\right)_T\right] \\ &= \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2}\frac{\lambda^2\gamma}{1-\gamma}T\right) \\ &= \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2}\frac{\gamma}{1-\gamma}\frac{(\mu-r)^2}{\sigma^2}T\right). \end{split}$$

Updated: December 19, 2023

This completes the proof.

(c) By part (a) and since $\lambda = \frac{\mu - r}{\sigma}$, we have

$$V_t(x, \vartheta^x) = x \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu - r}{\sigma} R\right)_t,$$

and by part (b), we have

$$\vartheta_t^x = \frac{x}{S_t^1} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma^2} \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_t.$$

Therefore, we obtain directly that

$$\pi_t^* := \frac{\vartheta_t^x S_t^1}{V_t(x, \vartheta^x)} = \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma^2}.$$

This completes the proof.

Exercise 13.3 $\left(\frac{d\hat{P}}{dP} \text{ has moments of all orders}\right)$ Let S be a continuous real-valued semimartingale satisfying the structure condition (SC), i.e. there exist a continuous local martingale M null at zero and a predictable process λ such that

$$S = S_0 + M + \int \lambda \, \mathrm{d} \langle M \rangle,$$

and with the mean-variance tradeoff process $K = \int \lambda^2 d\langle M \rangle$ bounded. Now define $\hat{Z} := \mathcal{E}(-\lambda \bullet M)$ and $\frac{d\hat{P}}{dP} := \hat{Z}_T$.

- (a) Show that $\hat{P} \in \mathbb{P}_{e,\text{loc}}(S)$.
- (b) Show that both $\frac{d\hat{P}}{dP}$ and $\frac{dP}{d\hat{P}}$ have moments of all orders.

Solution 13.3

(a) We need to show that \hat{P} is an equivalent probability measure, and that S is a \hat{P} -local martingale. To this end, first note that since K is bounded, we have that

$$E\left[\exp\left(\frac{1}{2}\langle -\lambda \bullet M \rangle_T\right)\right] = E\left[\exp\left(\frac{1}{2}K_T\right)\right] < \infty.$$

So by Novikov's condition, we can conclude that \hat{Z} is a martingale. As \hat{Z} is strictly positive, it follows that \hat{P} is an equivalent probability measure. It now remains to show that S is a \hat{P} -local martingale. To this end, we first apply the stochastic product rule to $\hat{Z}S$ and write

$$d(\hat{Z}S) = \hat{Z} dS + S d\hat{Z} + d\langle \hat{Z}, S \rangle.$$

Updated: December 19, 2023

Then we use that S satisfies (SC) and that

$$d\hat{Z} = d\mathcal{E}(-\lambda \bullet M) = \mathcal{E}(-\lambda \bullet M) d(-\lambda \bullet M) = -\lambda \mathcal{E}(-\lambda \bullet M) dM = -\lambda \hat{Z} dM$$

to compute

$$d(\hat{Z}S) = \hat{Z} dM + \hat{Z}\lambda d\langle M \rangle - S\lambda \hat{Z} dM - \lambda \hat{Z} d\langle M \rangle$$
$$= (\hat{Z} - S\lambda \hat{Z}) dM.$$

As \hat{Z} , S and M are continuous, it follows that $\hat{Z}S$ is a P-local martingale, so that S is a \hat{P} -local martingale, and hence $\hat{P} \in \mathbb{P}_{e,loc}$, as required.

(b) We compute, for any $p \in \mathbb{R}$,

$$\hat{Z}_T^p = \exp\left(-p\lambda \bullet M_T - \frac{1}{2}p\lambda^2 \bullet \langle M \rangle_T\right)$$
$$= \exp\left(-p\lambda \bullet M_T - \frac{1}{2}p^2\lambda^2 \bullet \langle M \rangle_T\right) \exp\left(\frac{1}{2}(p^2 - p)\lambda^2 \bullet \langle M \rangle_T\right)$$
$$= \mathcal{E}(-p\lambda \bullet M)_T \exp\left((p^2 - p)K_T\right).$$

So letting $C < \infty$ be a bound on K, we can write

$$E[\hat{Z}_T^p] \leqslant E[\mathcal{E}(-p\lambda \bullet M)_T] \exp(C|p^2 - p|) \leqslant \exp(C|p^2 - p|) < \infty,$$

since $\mathcal{E}(-p\lambda \bullet M)$ is a supermartingale. As $Z_T = \frac{\mathrm{d}\hat{P}}{\mathrm{d}P}$ and $Z_T^{-1} = \frac{\mathrm{d}P}{\mathrm{d}\hat{P}}$, this completes the proof.