Mathematical Finance
 Exercise Sheet 6

Submit by 12:00 on Wednesday, November 8 via the course homepage.

Exercise 6.1 (Bounded in L^{0}) Show that a nonempty set $C \subseteq L^{0}$ is bounded in L^{0} if and only if for every sequence $\left(X_{n}\right)_{n \in \mathbb{N}} \subseteq C$ and every sequence of scalars $\lambda_{n} \rightarrow 0$, we have $\lambda_{n} X_{n} \rightarrow 0$ in L^{0}.

Solution 6.1 Suppose $C \subseteq L^{0}$ is bounded so that $\lim _{n \rightarrow \infty} \sup _{X \in C} P[|X|>n]=0$, and fix a subsequence $\left(X_{n}\right)_{n \in \mathbb{N}} \subseteq C$ and a sequence of scalars $\lambda_{n} \rightarrow 0$, where we may assume $\lambda_{n} \neq 0$ for all $n \in \mathbb{N}$. Fix $\varepsilon>0$. We need to show that

$$
P\left[\left|\lambda_{n} X_{n}\right|>\varepsilon\right]=P\left[\left|X_{n}\right|>\varepsilon /\left|\lambda_{n}\right|\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

To this end, we fix $\delta>0$, and using the boundedness of C, we choose some $n_{0} \in \mathbb{N}$ such that $\sup _{X \in C} P\left[|X|>n_{0}\right] \leqslant \delta$. Since $\lambda_{n} \rightarrow 0$, there is $N \in \mathbb{N}$ such that for all $n \geqslant N$, we have $\varepsilon /\left|\lambda_{n}\right|>n_{0}$. So then for all $n \geqslant N$,

$$
P\left[\left|\lambda_{n} X_{n}\right|>\varepsilon\right] \leqslant P\left[\left|X_{n}\right|>n_{0}\right] \leqslant \sup _{X \in C} P\left[\left|X_{n}\right|>n_{0}\right] \leqslant \delta .
$$

As $\delta>0$ was arbitrary, this implies $\lambda_{n} X_{n} \rightarrow 0$ in L^{0}.
Conversely, suppose that for any sequence $\left(X_{n}\right)_{n \in \mathbb{N}} \subseteq C$ and any sequence of scalars $\lambda_{n} \rightarrow 0$, we have $\lambda_{n} X_{n} \rightarrow 0$ in L^{0}. Suppose for a contradiction that C is not bounded in L^{0}. Then there is some $\delta>0$ such that for all $n \in \mathbb{N}$,

$$
\sup _{X \in C} P[|X|>n] \geqslant 2 \delta .
$$

In particular, by the definition of the supremum, we can find a sequence $\left(X_{n}\right) \subseteq C$ such that

$$
P\left[\left|X_{n}\right|>n\right] \geqslant \delta, \quad \forall n \in \mathbb{N} .
$$

But then

$$
P\left[\left|\frac{1}{n} X_{n}\right|>1\right] \geqslant \delta, \quad \forall n \in \mathbb{N}
$$

so that $\frac{1}{n} X_{n} \nrightarrow 0$ in L^{0}. This contradicts our assumption and thus completes the proof.

Exercise 6.2 (Quadratic covariation) Recall that for a semimartingale S, the optional quadratic variation process is given by

$$
[S]:=S^{2}-S_{0}^{2}-2 \int S_{-} \mathrm{d} S
$$

For two semimartingales X and Y, we define the optional quadratic covariation process to be

$$
[X, Y]:=\frac{1}{4}([X+Y]-[X-Y])
$$

Note that this definition is "consistent" with the optional quadratic variation in the sense that $[X, X]=[X]$.
(a) Establish the integration by parts formula

$$
X Y=X_{0} Y_{0}+\int X_{-} \mathrm{d} Y+\int Y_{-} \mathrm{d} X+[X, Y]
$$

(b) Show that $\Delta[X, Y]=\Delta X \Delta Y$.
(c) Show that $\sum_{0<t \leqslant T}\left(\Delta X_{t}\right)^{2} \leqslant[X]_{T}$.

In particular, $\sum_{0<t \leqslant T}\left(\Delta X_{t}\right)^{2}$ is P-a.s. convergent (while $\sum_{0<t \leqslant T}\left|\Delta X_{t}\right|$ need not converge).

Solution 6.2

(a) Using the definition of quadratic covariation, we write

$$
\begin{aligned}
4[X, Y]= & {[X+Y]-[X-Y] } \\
= & (X+Y)^{2}-(X+Y)_{0}^{2}-2 \int(X+Y)_{-} \mathrm{d}(X+Y) \\
& -(X-Y)^{2}+(X-Y)_{0}^{2}+2 \int(X-Y)_{-} \mathrm{d}(X-Y) \\
= & 4 X Y-4 X_{0} Y_{0}-4 \int X_{-} \mathrm{d} Y-4 \int Y_{-} \mathrm{d} X
\end{aligned}
$$

This rearranges to the integration by parts formula, completing the proof.
(b) Using the integration by parts formula, we have

$$
\begin{aligned}
\Delta[X, Y] & =\Delta(X Y)-X_{-} \Delta Y-Y_{-} \Delta X \\
& =X Y-X_{-} Y_{-}-X_{-}\left(Y-Y_{-}\right)-Y_{-}\left(X-X_{-}\right) \\
& =X Y-X_{-} Y-X Y_{-}+X_{-} Y_{-} \\
& =\left(X-X_{-}\right)\left(Y-Y_{-}\right) \\
& =\Delta X \Delta Y .
\end{aligned}
$$

(c) By part (b), we have

$$
\sum_{0<t \leqslant T}\left(\Delta X_{t}\right)^{2}=\sum_{0<t \leqslant T} \Delta[X, X]_{t}=\sum_{0<t \leqslant T} \Delta[X]_{t} .
$$

Since the map $t \mapsto[X]_{t}$ is increasing and $[X]_{0}=0$, we have

$$
\sum_{0<t \leqslant T} \Delta[X]_{t} \leqslant[X]_{T}<\infty
$$

as required.

Exercise 6.3 (Semimartingales) Show that $X \in \mathbb{D}$ is a semimartingale if and only if $d_{E}^{\prime}\left(\lambda_{n} X, 0\right) \rightarrow 0$ whenever $\lambda_{n} \rightarrow 0$ in \mathbb{R}.

Solution 6.3 Assume first that $X \in \mathbb{D}$ is a semimartingale, and let $\lambda_{n} \rightarrow 0$ in \mathbb{R}. We need to show that $d_{E}^{\prime}\left(\lambda_{n} X, 0\right) \rightarrow 0$. Recall by Lemma 3.2 that this is equivalent to showing that $H^{n} \bullet\left(\lambda_{n} X\right)_{T} \rightarrow 0$ in L^{0} for every sequence $\left(H^{n}\right)_{n \in \mathbb{N}} \subseteq \mathrm{~b} \mathcal{E}_{0}$ with $\left\|H^{n}\right\|_{\infty} \leqslant 1$. So take such a sequence $\left(H^{n}\right)_{n \in \mathbb{N}}$. Then we have

$$
H^{n} \bullet\left(\lambda_{n} X\right)_{T}=\left(\lambda_{n} H^{n}\right) \bullet X_{T},
$$

and $\left\|\lambda_{n} H^{n}\right\|_{\infty} \leqslant\left|\lambda_{n}\right| \rightarrow 0$. Since $X \in \mathbb{D}$ is a semimartingale, it is a good integrator (by Theorem 2.7), and thus $\left(\lambda_{n} H^{n}\right) \bullet X_{T} \rightarrow 0$ in L^{0}, as required.

Conversely, assume that $d_{E}^{\prime}\left(\lambda_{n} X, 0\right) \rightarrow 0$ whenever $\lambda_{n} \rightarrow 0$ in \mathbb{R}, and suppose for a contradiction that X is not a semimartingale. Then X is not a good integrator (by Theorem 2.5), and so there exists a sequence $\left(H^{n}\right)_{n \in \mathbb{N}} \subseteq$ b敢 with $\left\|H^{n}\right\|_{\infty} \rightarrow 0$, but with $H^{n} \bullet X_{T} \nrightarrow 0$ in L^{0}. Using our assumption with $\lambda_{n}=\left\|H_{n}\right\|_{\infty}$ gives $d_{E}^{\prime}\left(\left\|H_{n}\right\|_{\infty} X, 0\right) \rightarrow 0$. We may assume that $\left\|H_{n}\right\|_{\infty}>0$ for all $n \in \mathbb{N}$. Then by applying Lemma 3.2 with the sequence $\left(\frac{1}{\left\|H^{n}\right\|_{\infty}} H^{n}\right)_{n \in \mathbb{N}} \subseteq$ b \mathcal{E}_{0} (which satisfies $\left\|\frac{1}{\left\|H^{n}\right\|_{\infty}} H^{n}\right\|_{\infty}=1$), we conclude that

$$
\left(\frac{1}{\left\|H^{n}\right\|_{\infty}} H^{n}\right) \bullet\left(\left\|H^{n}\right\|_{\infty} X\right)_{T} \rightarrow 0 \quad \text { in } L^{0}
$$

But $\left(\frac{1}{\left\|H^{n}\right\|_{\infty}} H^{n}\right) \bullet\left(\left\|H^{n}\right\|_{\infty} X\right)_{T}=H^{n} \bullet X_{T}$, which contradicts $H^{n} \bullet X_{T} \nrightarrow 0$ in L^{0}. This completes the proof.

