Mathematical Finance Exercise Sheet 8

Submit by 12:00 on Wednesday, November 22 via the course homepage.

Exercise 8.1 (Uniqueness of the numéraire portfolio)

(a) Recall Jensen's inequality: if X is an integrable random variable taking values in an interval $I \subseteq \mathbb{R}$ and $f: I \rightarrow \mathbb{R}$ is a convex function such that $f(X)$ is also integrable, then

$$
E[f(X)] \geqslant f(E[X])
$$

Show that if f is strictly convex and X is not almost surely constant (i.e., there exists no $c \in \mathbb{R}$ with $P[X=c]=1$), we have the strict inequality

$$
E[f(X)]>f(E[X])
$$

(b) By using part (a) or otherwise, show that there is at most one numéraire portfolio.

Solution 8.1

(a) By definition, f is strictly convex means that for any distinct $x_{1}, x_{2} \in I$, we have the strict inequality

$$
f\left(t x_{1}+(1-t) x_{2}\right)<t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right), \quad \forall t \in(0,1) .
$$

On the event $\{X \neq E[X]\}$, we have

$$
f(t X+(1-t) E[X])<t f(X)+(1-t) f(E[X]), \quad \forall t \in(0,1)
$$

As the above always holds with weak inequality and $P[X \neq E[X]]>0$, we can take the expectation of both sides while preserving the strict inequality to get

$$
E[f(t X+(1-t) E[X])]<t E[f(X)]+(1-t) f(E[X]), \quad \forall t \in(0,1)
$$

Applying Jensen's inequality to the left-hand side gives

$$
f(E[X])<t E[f(X)]+(1-t) f(E[X]), \quad \forall t \in(0,1) .
$$

Rearranging gives $f(E[X])<E[f(X)]$, as required.
(b) Recall that an element $X \in \mathcal{X}_{++}^{1}$ is a numéraire portfolio if for all elements $V \in \mathcal{X}_{++}^{1}$, the quotient V / X is a supermartingale. So suppose $X, Y \in \mathcal{X}_{++}^{1}$ are numéraire portfolios. Then both X / Y and Y / X are supermartingales with $X_{0}=Y_{0}=1$, and so for all $t \in[0, T]$,

$$
E\left[X_{t} / Y_{t}\right] \leqslant E\left[X_{0} / Y_{0}\right]=1 \quad \text { and } \quad E\left[Y_{t} / X_{t}\right] \leqslant E\left[Y_{0} / X_{0}\right]=1
$$

Note that the function $x \mapsto 1 / x$ is convex on $(0, \infty)$, and thus Jensen's inequality gives

$$
1 \geqslant E\left[Y_{t} / X_{t}\right] \geqslant 1 / E\left[X_{t} / Y_{t}\right] \geqslant 1
$$

which implies that $E\left[X_{t} / Y_{t}\right]=1$ (and $E\left[Y_{t} / X_{t}\right]=1$) for all $t \in[0, T]$. In particular, for each $t \in[0, T]$ we have

$$
E\left[Y_{t} / X_{t}\right]=1 / E\left[X_{t} / Y_{t}\right] .
$$

As the function $x \mapsto 1 / x$ is strictly convex on $(0, \infty)$, this implies that for each $t \in[0, T]$, the random variable X_{t} / Y_{t} is almost surely constant. Since $E\left[X_{t} / Y_{t}\right]=1$, we obtain $X_{t} / Y_{t}=1$ almost surely for all $t \in[0, T]$, and hence X and Y are modifications of each other. As X and Y are both right-continuous, they are even indistinguishable. This completes the proof.

Exercise 8.2 (Finding the numéraire portfolio) Show that if Z is an $\mathrm{E} \sigma \mathrm{MD}$ for S and $1 / Z \in \mathcal{X}_{++}^{1}$, then $1 / Z$ is the numéraire portfolio.

Solution 8.2 Take some $V \in \mathcal{X}_{++}^{1}$. We need to show that $V /(1 / Z)=Z V$ is a supermartingale. To this end, we write $V=1+G(\vartheta)$ for some $\vartheta \in \Theta^{1}$ and apply the stochastic product rule to $Z G(\vartheta)$ to get

$$
\begin{aligned}
\mathrm{d}(Z G(\vartheta)) & =Z_{-} \mathrm{d} G(\vartheta)+G_{-}(\vartheta) \mathrm{d} Z+\mathrm{d}[Z, G(\vartheta)] \\
& =Z_{-} \vartheta \mathrm{d} S+G_{-}(\vartheta) \mathrm{d} Z+\vartheta \mathrm{d}[Z, S]
\end{aligned}
$$

Again by the stochastic product rule, we have

$$
\mathrm{d}(Z S)=Z_{-} \mathrm{d} S+S_{-} \mathrm{d} Z+\mathrm{d}[Z, S]
$$

and therefore $\mathrm{d}[Z, S]=\mathrm{d}(Z S)-Z_{-} \mathrm{d} S-S_{-} \mathrm{d} Z$. We thus have

$$
\begin{aligned}
\mathrm{d}(Z G(\vartheta)) & =Z_{-} \vartheta \mathrm{d} S+G_{-}(\vartheta) \mathrm{d} Z+\vartheta \mathrm{d}(Z S)-\vartheta Z_{-} \mathrm{d} S-\vartheta S_{-} \mathrm{d} Z \\
& =G_{-}(\vartheta) \mathrm{d} Z+\vartheta \mathrm{d}(Z S)-\vartheta S_{-} \mathrm{d} Z \\
& =\left(G_{-}(\vartheta)-\vartheta S_{-}\right) \mathrm{d} Z+\vartheta \mathrm{d}(Z S)
\end{aligned}
$$

As Z is an $\mathrm{E} \sigma \mathrm{MD}$ for $S, Z S$ is a σ-martingale and thus an integral against a local martingale. Since Z is also a local martingale (as it is an $\mathrm{E} \sigma \mathrm{MD}$), we have that
$Z G(\vartheta)$ is an integral against a (multi-dimensional) local martingale, and thus so is $Z G(\vartheta)+Z=Z V$. As $Z>0$ and $V=1+G(\vartheta)>0$, we have $Z V>0$, and hence the Ansel-Stricker theorem implies that $Z V$ is a supermartingale, as required.

Exercise 8.3 (Yor's formula) Recall that for a semimartingale X, the stochastic exponential of X, denoted by $\mathcal{E}(X)$, is the unique solution Z to the SDE

$$
\mathrm{d} Z=Z_{-} \mathrm{d} X, \quad Z_{0}=1 .
$$

Prove that for two semimartingales X and Y, the following equality holds

$$
\mathcal{E}(X) \mathcal{E}(Y)=\mathcal{E}(X+Y+[X, Y])
$$

Solution 8.3 By definition of the stochastic exponential, it suffices to show that $\mathcal{E}(X) \mathcal{E}(Y)$ satisfies the SDE

$$
\mathrm{d} Z=Z_{-} \mathrm{d}(X+Y+[X, Y]), \quad Z_{0}=1
$$

As a first step, we clearly have $\mathcal{E}(X)_{0} \mathcal{E}(Y)_{0}=1$. Next, we apply the stochastic product rule to get

$$
\mathrm{d}(\mathcal{E}(X) \mathcal{E}(Y))=\mathcal{E}(X)_{-} \mathrm{d} \mathcal{E}(Y)+\mathcal{E}(Y)_{-} \mathrm{d} \mathcal{E}(X)+\mathrm{d}[\mathcal{E}(X), \mathcal{E}(Y)]
$$

By definition of the stochastic exponential, we have that $\mathrm{d} \mathcal{E}(X)=\mathcal{E}(X)_{-} \mathrm{d} X$ and $\mathrm{d} \mathcal{E}(Y)=\mathcal{E}(Y)_{-} \mathrm{d} Y$. Substituting these values into the above equality gives

$$
\begin{aligned}
\mathrm{d}(\mathcal{E}(X) \mathcal{E}(Y)) & =\mathcal{E}(X)_{-} \mathcal{E}(Y)_{-} \mathrm{d} Y+\mathcal{E}(Y)_{-} \mathcal{E}(X)_{-} \mathrm{d} X+\mathcal{E}(X)_{-} \mathcal{E}(Y)_{-} \mathrm{d}[X, Y] \\
& =\mathcal{E}(X)_{-} \mathcal{E}(Y)_{-} \mathrm{d}(X+Y+[X, Y])
\end{aligned}
$$

This completes the proof.

Exercise 8.4 (Digital option) In the Black-Scholes model, consider the digital option with undiscounted payoff $\widetilde{H}=\mathbf{1}_{\left\{\widetilde{S}_{T}>\widetilde{K}\right\}}$, where $\widetilde{K}>0$ is fixed. Calculate the arbitrage-free price process and the replicating strategy of the digital option, and thus conclude that it is attainable.

Solution 8.4 Let Q denote the EMM for S, and W^{Q} the corresponding Q-Brownian motion so that $S_{t}=S_{0} \exp \left(\sigma W_{t}^{Q}-\frac{1}{2} \sigma^{2} t\right)$ for all $t \in[0, T]$. Note this also implies that $S_{T}=S_{t} \exp \left(\sigma\left(W_{T}^{Q}-W_{t}^{Q}\right)-\frac{1}{2} \sigma^{2}(T-t)\right)$. To compute the arbitrage-free price of the digital option at time t, we start by applying the risk-neutral valuation formula
to get

$$
\left.\begin{array}{rl}
V_{t} & =E_{Q}\left[H \mid \mathcal{F}_{t}\right]=e^{-r T} E_{Q}\left[\mathbf{1}_{\left\{S_{T}>K\right\}} \mid \mathcal{F}_{t}\right]=e^{-r T} Q\left[S_{T}>K \mid \mathcal{F}_{t}\right] \\
& =e^{-r T} Q\left[S_{t} \exp \left(\sigma\left(W_{T}^{Q}-W_{t}^{Q}\right)-\frac{1}{2} \sigma^{2}(T-t)\right)>K\right. \\
& =e^{-r T} Q\left[x \exp \left(\sigma\left(W_{T}^{Q}-W_{t}^{Q}\right)-\frac{1}{2} \sigma^{2}(T-t)\right)>K\right.
\end{array} \mathcal{F}_{t}\right]\left.\right|_{x=S_{t}} .
$$

As W^{Q} is a Q-Brownian motion, we can write

$$
\sigma\left(W_{T}^{Q}-W_{t}^{Q}\right)=\sigma \sqrt{T-t} Z
$$

where $Z \sim \mathcal{N}(0,1)$ under Q. We thus have

$$
\begin{aligned}
V_{t} & =\left.e^{-r T} Q\left[Z>\frac{\log \frac{K}{x}+\frac{1}{2} \sigma^{2}(T-t)}{\sigma \sqrt{T-t}}\right]\right|_{x=S_{t}} \\
& =\left.e^{-r T} \Phi\left(\frac{\log \frac{x}{K}-\frac{1}{2} \sigma^{2}(T-t)}{\sigma \sqrt{T-t}}\right)\right|_{x=S_{t}}
\end{aligned}
$$

where Φ denotes the cumulative distribution function of the standard normal distribution. Let us write

$$
v(t, x):=e^{-r T} \Phi\left(\frac{\log \frac{x}{K}-\frac{1}{2} \sigma^{2}(T-t)}{\sigma \sqrt{T-t}}\right)
$$

so that $v\left(t, S_{t}\right)=V_{t}$. Applying Itô's formula to $v\left(t, S_{t}\right)$ allows us to write V_{t} as the sum of an integral against t and a stochastic integral against S_{t}. As V is a Q-martingale, it must be the case that the integral against t is zero. Moreover, we can see that the integrand of the integral against S_{t} is

$$
\vartheta_{t}:=\frac{\partial v}{\partial x}\left(t, S_{t}\right)=\frac{e^{-r T}}{\sigma \sqrt{T-t}} \phi\left(\frac{\log \frac{S_{t}}{K}-\frac{1}{2} \sigma^{2}(T-t)}{\sigma \sqrt{T-t}}\right) \frac{1}{S_{t}},
$$

where ϕ denotes the probability density function of the standard normal distribution. As $V \geqslant 0$, then

$$
V=V_{0}+\int \vartheta \mathrm{d} S \geqslant 0
$$

and so the digital option is attainable, with the replicating strategy given by $\left(V_{0}, \vartheta\right)$. In undiscounted units, we can write

$$
\widetilde{V}_{t}=e^{r t} V_{t}=e^{r t} v\left(t, S_{t}\right)=e^{r t} v\left(t, e^{-r t} \widetilde{S}_{t}\right)=: \widetilde{v}\left(t, \widetilde{S}_{t}\right),
$$

where $\widetilde{v}(t, x):=e^{r t} v\left(t, e^{-r t} x\right)$. The replicating is now $\left(V_{0}, \widetilde{\vartheta}\right)$, where

$$
\widetilde{\vartheta}=\frac{\partial \widetilde{v}}{\partial x}\left(t, \widetilde{S}_{t}\right)=\frac{\partial v}{\partial x}\left(t, S_{t}\right)=\vartheta .
$$

This completes the proof.

