Mathematical Finance Exercise Sheet 9

Submit by 12:00 on Wednesday, November 29 via the course homepage.

Exercise 9.1 (Coherent risk measure) Recall the map $\pi^{s}: L^{\infty} \rightarrow \mathbb{R}$ defined by

$$
\pi^{s}(H):=\inf \left\{v_{0} \in \mathbb{R}: v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H P \text {-a.s. for some } \vartheta \in \Theta_{\mathrm{adm}}\right\} .
$$

Prove that $\rho:=-\pi^{s}$ is a coherent risk measure. That is, for all $H, H^{\prime} \in L^{\infty}$,

1. $\pi^{s}(H) \leqslant \pi^{s}\left(H^{\prime}\right)$ if $H \leqslant H^{\prime} P$-a.s. (monotonicity),
2. $\pi^{s}(H+c)=\pi^{s}(H)+c$ for all $c \in \mathbb{R} \quad$ (cash invariance),
3. $\pi^{s}(\lambda H)=\lambda \pi^{s}(H)$ for all $\lambda>0 \quad$ (positive homogeneity),
4. $\pi^{s}\left(H+H^{\prime}\right) \leqslant \pi^{s}(H)+\pi^{s}\left(H^{\prime}\right) \quad$ (subadditivity).

Deduce that π^{s} is convex.
What happens in 3 . for $\lambda=0$?

Solution 9.1 Note that $\pi^{s}(H) \leqslant\|H\|_{\infty}$ because $\vartheta \equiv 0 \in \Theta_{\text {adm }}$. We check that π^{s} satisfies the four conditions.

1. Let $v_{0} \in \mathbb{R}$ be such that there exists $\vartheta \in \Theta_{\text {adm }}$ with $v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H^{\prime}$. Then certainly $v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H$, and hence $v_{0} \geqslant \pi^{s}(H)$. Taking the infimum over all such $v_{0} \in \mathbb{R}$ gives $\pi^{s}\left(H^{\prime}\right) \geqslant \pi^{s}(H)$ as required.
2. Note that for $v_{0} \in \mathbb{R}$ and $\vartheta \in \Theta_{\mathrm{adm}}$, we have

$$
v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H+c \quad \Longleftrightarrow \quad v_{0}-c+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H
$$

It follows that the set

$$
\left\{v_{0} \in \mathbb{R}: v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H+c P \text {-a.s. for some } \vartheta \in \Theta_{\mathrm{adm}}\right\}
$$

is equal to

$$
\left\{v_{0} \in \mathbb{R}: v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H P \text {-a.s. for some } \vartheta \in \Theta_{\mathrm{adm}}\right\}+c .
$$

Taking the infimum over both sets gives $\pi^{s}(H+c)=\pi^{s}(H)+c$.
3. Fix $\lambda>0$ and take $v_{0} \in \mathbb{R}$ and $\vartheta \in \Theta_{\text {adm }}$ with $v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant \lambda H$. Then we have $v_{0} / \lambda+\int_{0}^{T}\left(\vartheta_{u} / \lambda\right) \mathrm{d} S_{u} \geqslant H$. Since $\vartheta_{u} / \lambda \in \Theta_{\text {adm }}$, we have shown that the set

$$
\left\{v_{0} \in \mathbb{R}: v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant \lambda H P \text {-a.s. for some } \vartheta \in \Theta_{\mathrm{adm}}\right\}
$$

is a subset of

$$
\lambda\left\{v_{0} \in \mathbb{R}: v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H P \text {-a.s. for some } \vartheta \in \Theta_{\mathrm{adm}}\right\} .
$$

We can repeat the above argument to see that the above two sets are indeed equal. Then taking the infimum of both sets gives $\pi^{s}(\lambda H)=\lambda \pi^{s}(H)$ as required.
4. Suppose $v_{0}, v_{0}^{\prime} \in \mathbb{R}$ are such that there exist $\vartheta, \vartheta^{\prime} \in \Theta_{\text {adm }}$ with

$$
v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H \quad \text { and } \quad v_{0}^{\prime}+\int_{0}^{T} \vartheta_{u}^{\prime} \mathrm{d} S_{u} \geqslant H^{\prime}
$$

Then we have

$$
v_{0}+v_{0}^{\prime}+\int_{0}^{T}\left(\vartheta_{u}+\vartheta_{u}^{\prime}\right) \mathrm{d} S_{u} \geqslant H+H^{\prime}
$$

As $\vartheta+\vartheta^{\prime} \in \Theta_{\text {adm }}$, it follows that $v_{0}+v_{0}^{\prime} \geqslant \pi^{s}\left(H+H^{\prime}\right)$. Taking the infimum over all such v_{0} and v_{0}^{\prime} gives $\pi^{s}(H)+\pi^{s}\left(H^{\prime}\right) \geqslant \pi^{s}\left(H+H^{\prime}\right)$ as required.

We have thus shown that $-\pi^{s}$ is a coherent risk measure. To see that it is convex, take $H, H^{\prime} \in \Theta_{\text {adm }}$ and $t \in(0,1)$. We have by 4 . and 3 . that

$$
\pi^{s}\left(t H+(1-t) H^{\prime}\right) \leqslant \pi^{s}(t H)+\pi^{s}\left((1-t) H^{\prime}\right)=t \pi^{s}(H)+(1-t) \pi^{s}\left(H^{\prime}\right)
$$

so that π^{s} is convex. This completes the proof.
Finally, for $\lambda=0,3$ reads $\pi^{s}(0)=0$, i.e.

$$
\inf \left\{v_{0} \in \mathbb{R}: v_{0}+\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant H P \text {-a.s. for some } \vartheta \in \Theta_{\mathrm{adm}}\right\}=0
$$

First note that $\pi^{s}(0) \leqslant 0$, as we can take $v_{0}=0$ and $\vartheta \equiv 0$. Now suppose for a contradiction that $\pi^{s}(0)<0$. Then there is $v_{0}<0$ with $\int_{0}^{T} \vartheta_{u} \mathrm{~d} S_{u} \geqslant-v_{0}>0 P$-a.s. for some $\vartheta \in \Theta_{\text {adm }}$. This violates (NA). So if S satisfies (NA), 3. also holds for $\lambda=0$.

Exercise 9.2 (Minimum principle) Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geqslant 0}, \mathbb{P}\right)$ be a filtered probability space satisfying the usual conditions, and let $X=\left(X_{t}\right)_{t \geqslant 0}$ be a nonnegative RCLL supermartingale. Define the stopping time τ_{0} by

$$
\tau_{0}:=\inf \left\{t \geqslant 0: X_{t} \wedge X_{t-}=0\right\}
$$

Show that $X \equiv 0$ on $\llbracket \tau_{0}, \infty \llbracket P$-a.s.
This result is known as the minimum principle for nonnegative supermartingales.

Solution 9.2 Extend X to be a supermartingale on $[0, \infty]$ be setting $X_{\infty}:=0$. For each $n \in \mathbb{N}$, define the stopping time $\tau_{n}:=\inf \left\{t \geqslant 0: X_{t}<\frac{1}{n}\right\}$. Note that by right-continuity of X, we have $X_{\tau_{n}} \leqslant \frac{1}{n}$ on $\left\{\tau_{n}<\infty\right\}$. But also $X_{\tau_{n}}=0$ on $\left\{\tau_{n}=\infty\right\}$, and thus $X_{\tau_{n}} \leqslant \frac{1}{n}$ on all of Ω. Now fix $r \geqslant 0$. As $\tau_{n} \leqslant \tau_{0} \leqslant \tau_{0}+r$, we can apply the optional stopping theorem with stopping times $\tau_{n} \leqslant \tau_{0}+r$ to get

$$
E\left[X_{\tau_{0}+r}\right] \leqslant E\left[X_{\tau_{n}}\right] \leqslant \frac{1}{n}
$$

Letting $n \rightarrow \infty$ gives $E\left[X_{\tau_{0}+r}\right] \leqslant 0$, and as X is nonnegative, this implies that $X_{\tau_{0}+r}=0 P$-a.s. Considering the intersection of the events $\left\{X_{\tau_{0}+r}=0\right\}$ over $r \in \mathbb{Q}^{+}$ and using right-continuity of X gives the claim.

Exercise 9.3 (σ-martingales)

(a) Let $Y=\left(Y_{t}\right)_{0 \leqslant t \leqslant T}$ be an RCLL process and $Q \approx P$ an equivalent measure with density process Z given by $Z_{t}:=\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{t}}$. Then Y is a Q - σ-martingale if and only if $Z Y$ is a $P-\sigma$-martingale.

Hint. You may use Bayes theorem and the fact that the sum of two σ-martingales is a σ-martingale.
(b) Show that if S admits a P-equivalent σ-martingale density and $Q \approx P$ on \mathcal{F}_{T}, then S also admits a Q-equivalent σ-martingale density.

Solution 9.3

(a) Suppose first that Y is a $Q-\sigma$-martingale. We show that $Z Y$ is a $P-\sigma$-martingale. Assume for simplicity that $Y_{0}=0$, and write $Y=\psi \bullet M$ for some Q-local martingale M and $\psi \in L(M)$. Applying the stochastic product rule to $Z Y$, we get

$$
\mathrm{d}(Z Y)=Y_{-} \mathrm{d} Z+Z_{-} \mathrm{d} Y+\mathrm{d}[Z, Y]
$$

Note that since $Y=\psi \bullet M$, we have $\mathrm{d} Y=\psi \mathrm{d} M$ and hence

$$
Z_{-} \mathrm{d} Y=\psi Z_{-} \mathrm{d} M=\psi \mathrm{d}\left(Z_{-} \bullet M\right)
$$

Also, by again using $Y=\psi \bullet M$, we can write

$$
\mathrm{d}[Z, Y]=\mathrm{d}[Z, \psi \bullet M]=\psi \mathrm{d}[Z, M] .
$$

We can thus rewrite $\mathrm{d}(Z Y)$ as

$$
\mathrm{d}(Z Y)=Y_{-} \mathrm{d} Z+\psi \mathrm{d}\left(Z_{-} \bullet M\right)+\psi \mathrm{d}[Z, M]
$$

By applying the stochastic product rule to $Z M$, we have

$$
\mathrm{d}(Z M)=Z_{-} \mathrm{d} M+M_{-} \mathrm{d} Z+\mathrm{d}[M, Z]
$$

and hence

$$
Z_{-} \bullet M=Z M-Z_{0} M_{0}-M_{-} \bullet Z-[M, Z]
$$

We thus have

$$
\begin{aligned}
\mathrm{d}(Z Y) & =Y_{-} \mathrm{d} Z+\psi \mathrm{d}\left(Z M-M_{-} \bullet Z-[M, Z]\right)+\psi \mathrm{d}[Z, M] \\
& =Y_{-} \mathrm{d} Z+\psi \mathrm{d}\left(Z M-M_{-} \bullet Z\right)
\end{aligned}
$$

Note that as Z is the density process of Q with respect to P, it is a P-martingale. Also, Bayes' theorem implies that $Z M$ is a P-local martingale, since M is a Q-local martingale. Note also that since M_{-}is locally bounded, the stochastic integral $M_{-} \bullet Z$ is a P-local martingale. Hence the difference $Z M-M_{-} \bullet Z$ is a P-local martingale, and thus $\psi \bullet\left(Z M-M_{-} \bullet Z\right)$ is a $P-\sigma$-martingale. As $Y_{-} \bullet Z$ is a P-local martingale, it is a $P-\sigma$-martingale, and thus so is $Z Y$, as claimed.

For the converse, simply repeat the above argument, but with Y replaced by $Z Y$ and Z replaced by $\frac{1}{Z}$, noting that $\frac{1}{Z}$ is the density process of P with respect to Q, which is a Q-martingale.
(b) We need to show that S admits a Q-equivalent σ-martingale density. Let D denote the given P-equivalent σ-martingale density. Then $D>0, D$ is a P-local martingale and $D S$ is a $P-\sigma$-martingale. We define the process $Y:=\frac{Z_{0}}{Z} D S$. Then $Z Y=Z_{0} D S$ is a $P-\sigma$-martingale, so by using part (a), we conclude that Y is a Q - σ-martingale. Also, as D is a P-local martingale, Bayes' theorem implies that $\frac{Z_{0}}{Z} D$ is a Q-local martingale. Finally, since $\frac{Z_{0}}{Z}$ is strictly positive (by the minimum principle for nonnegative supermartingales, since $Z_{T}>0$) and is 1 at zero, we conclude that $\frac{Z_{0}}{Z} D$ is an Q-equivalent σ-martingale density for S. This completes the proof.

Exercise 9.4 (A property of \mathcal{Z}) Fix $Q \in \mathbb{P}_{e, \sigma}(S)$. Recall that for each $t \in[0, T]$, we let \mathcal{Z}_{t} denote the space of RCLL martingales Z such that $Z_{s}=\left.\frac{\mathrm{d} R}{\mathrm{~d} Q}\right|_{\mathcal{F}_{s}}$ for all $0 \leqslant s \leqslant T$ for some $R \in \mathbb{P}_{\mathrm{e}, \sigma}(S)$ with $R=Q$ on \mathcal{F}_{t}.
Prove that if $Z^{1}, Z^{2} \in \mathcal{Z}_{t}$ and $A \in \mathcal{F}_{t}$, then $Z^{1} \mathbf{1}_{A}+Z^{2} \mathbf{1}_{A^{c}} \in \mathcal{Z}_{t}$.

Solution 9.4 For notational convenience, we set $Z:=Z^{1} \mathbf{1}_{A}+Z^{2} \mathbf{1}_{A^{c}}$. We first show that Z is a martingale. To start, note that since $Z_{s}^{1}=Z_{s}^{2}=1$ for all $s \in[0, t]$, then $Z_{s}=1$ for $s \in[0, t]$. Since Z^{1} and Z^{2} are adapted and $A \in \mathcal{F}_{t}$, it follows that Z is adapted. As Z^{1} and Z^{2} are RCLL and integrable, then so is Z. It remains to show that Z satisfies the martingale property, i.e. that for all $0 \leqslant s \leqslant u$, we have
$E\left[Z_{u} \mid \mathcal{F}_{s}\right]=Z_{s}$. To this end, first note that for $t \leqslant s \leqslant u \leqslant T$, we have $A \in \mathcal{F}_{s}$ and thus

$$
\begin{aligned}
E\left[Z_{u} \mid \mathcal{F}_{s}\right] & =E\left[Z_{u}^{1} \mathbf{1}_{A}+Z_{u}^{2} \mathbf{1}_{A^{c}} \mid \mathcal{F}_{s}\right]=E\left[Z_{u}^{1} \mid \mathcal{F}_{s}\right] \mathbf{1}_{A}+E\left[Z_{u}^{2} \mid \mathcal{F}_{s}\right] \mathbf{1}_{A^{c}}=Z_{s}^{1} \mathbf{1}_{A}+Z_{s}^{2} \mathbf{1}_{A^{c}} \\
& =Z_{s}
\end{aligned}
$$

Next, for $0 \leqslant s \leqslant t \leqslant u$, we use the tower law together with the above to get

$$
E\left[Z_{u} \mid \mathcal{F}_{s}\right]=E\left[E\left[Z_{u} \mid \mathcal{F}_{t}\right] \mid \mathcal{F}_{s}\right]=E\left[Z_{t} \mid \mathcal{F}_{s}\right]=E\left[Z_{t}^{1} \mathbf{1}_{A}+Z_{t}^{2} \mathbf{1}_{A^{c}} \mid \mathcal{F}_{s}\right]=1=Z_{s}
$$

Lastly, the case $0 \leqslant s \leqslant u \leqslant t$ is trivial, since then $E\left[Z_{u} \mid \mathcal{F}_{s}\right]=1=Z_{s}$. We have thus shown that Z is an RCLL martingale.

Note also that $Z>0$ and that $Z \equiv 1$ on $[0, t]$. By Exercise 9.3(a), it suffices to show that $Z S$ is a Q - σ-martingale since we can then conclude that the probability measure R satisfying $\frac{\mathrm{d} R}{\mathrm{~d} Q}=Z_{T}$ is an equivalent σ-martingale measure for S. To this end, first note that since $Z^{1} S$ and $Z^{2} S$ are $Q-\sigma$-martingales, there exist local martingales M^{1}, M^{2} and positive integrands ψ^{1}, ψ^{2} such that

$$
Z^{1} S-Z_{0}^{1} S_{0}=\psi^{1} \bullet M^{1} \quad \text { and } \quad Z^{2} S-Z_{0}^{2} S_{0}=\psi^{2} \bullet M^{2}
$$

Using that $Z=Z^{1} \mathbf{1}_{A}+Z^{2} \mathbf{1}_{A^{c}}$ together with $Z_{0}^{1}=Z_{0}^{2}=Z_{0}=1$, we have

$$
\begin{aligned}
Z S-Z_{0} S_{0} & =Z^{1} S \mathbf{1}_{A}+Z^{2} S \mathbf{1}_{A^{c}}-S_{0} \\
& =\left(Z^{1} S-Z_{0}^{1} S_{0}\right) \mathbf{1}_{A}+\left(Z^{2} S-Z_{0}^{2} S_{0}\right) \mathbf{1}_{A^{c}} \\
& =\left(\psi^{1} \bullet M^{1}\right) \mathbf{1}_{A}+\left(\psi^{2} \bullet M^{2}\right) \mathbf{1}_{A^{c}}
\end{aligned}
$$

Now, as $A \in \mathcal{F}_{t}$, the processes ϕ^{1}, ϕ^{2} defined by

$$
\phi^{1}:=\psi^{1} \mathbf{1}_{\llbracket 0, t \rrbracket}+\psi^{1} \mathbf{1}_{A \times(t, \infty)} \quad \text { and } \quad \phi^{2}:=\psi^{2} \mathbf{1}_{A^{c} \times(t, \infty)}
$$

are predictable. By checking the values at times $s \leqslant t$ and $s>t$, we can see that

$$
\phi^{1} \bullet M^{1}+\phi^{2} \bullet M^{2}=\left(\psi^{1} \bullet M^{1}\right) \mathbf{1}_{A}+\left(\psi^{2} \bullet M^{2}\right) \mathbf{1}_{A^{c}}=Z S-Z_{0} S_{0}
$$

Using that $\phi^{1} \bullet M^{1}$ and $\phi^{2} \bullet M^{2}$ are Q - σ-martingales and the fact that the sum of two σ-martingales is a σ-martingale, we conclude that also $Z S$ is a Q - σ-martingale. This completes the proof.

