Nur die Aufgaben mit einem \star werden korrigiert.

- 3.1. MC Fragen: Folgen und Reihen. Wählen Sie die einzige richtige Antwort.
- (a) Die Folge $(a_n)_{n\geq 1}$ sei definiert durch

 $a_n = \begin{cases} 1 + \sqrt{\frac{k}{12k+1}}, & \text{falls } n = 3k+1 \text{ für ein } k \in \mathbb{N}, \\ \frac{5k^3+k}{k^3+1}, & \text{falls } n = 3k+2 \text{ für ein } k \in \mathbb{N}, \\ \frac{(-1)^k}{k}, & \text{falls } n = 3k+3 \text{ für ein } k \in \mathbb{N}. \end{cases}$

Welche der folgenden Aussagen ist richtig?

- $\bigcap \lim_{n\to\infty} a_n$ existiert in \mathbb{R} ;
- \bigcirc lim inf_{$n\to\infty$} a_n existiert in \mathbb{R} ;
- $\bigcirc \lim \sup_{n \to \infty} a_n = 1 + \sqrt{1/12}.$
- (b) Welche der folgenden Aussagen ist richtig?
 - \bigcirc Sei $(q_n)_{n\geq 1}$ eine Folge rationaler Zahlen, so dass

$$|q_n - q_{n+1}| \to 0$$
 für $n \to \infty$.

Dann ist $(q_n)_{n\geq 1}$ eine Cauchy-Folge.

- \bigcirc Sei $(a_n)_{n\geq 1}$ eine konvergente Folge, und σ eine Permutation von \mathbb{N}^* (d.h. eine Bijektion der Menge \mathbb{N}^* auf sich selbst). Dann konvergiert auch die Folge $(b_n)_{n\geq 1}$ definiert durch $b_n=a_{\sigma(n)}$ für $n\geq 1$.
- (c) Sei $(x_n)_{n\geq 1}$ eine Cauchy-Folge in \mathbb{R} . Dann:
 - \bigcirc konvergiert die Reihe $\sum_{k\geq 1} \sqrt{x_k}$;
 - \bigcirc kann $(x_n)_{n\geq 1}$ unbeschränkt sein;
 - \bigcirc gibt es zu jedem $\varepsilon>0$ ein $N\in\mathbb{N},$ so dass für alle $m,n\geq N$

$$|x_m - x_n| < \varepsilon.$$

- (d) Seien $X_n=[\frac{n-1}{2n},\frac{n+1}{2n})$ und $Y_n=[n^2-n,\infty)$ für $n\geq 1$. Welche der folgenden Aussagen ist richtig?
 - $\bigcirc X_n \subset X_{n+1}$ für jedes $n \ge 1$;
- \bigcirc es existiert $n \ge 1$, so dass $Y_n \subset Y_{n+1}$;

 $\bigcirc \cap_{n>1} X_n \neq \emptyset;$

 $\bigcap \bigcap_{n\geq 1} Y_n \neq \emptyset.$

- (e) Sei $\sum_{k\geq 1} a_k$ eine reelle oder komplexe Reihe. Welche der folgenden Aussagen ist richtig?
 - \bigcirc Wenn $\lim_{n\to\infty} a_n = 0$, dann konvergiert die Reihe $\sum_{k>1} a_k$.
 - \bigcirc Wenn die Reihe $\sum_{k\geq 1} a_k$ konvergiert, dann gilt $\lim_{n\to\infty} a_n = 0$.
 - \bigcirc Wenn die Folge $(S_n)_{n\geq 1}$ der Partialsummen beschränkt ist, dann konvergiert die Reihe $\sum_{k\geq 1} a_k$.
 - \bigcirc Wenn die Reihe $\sum_{k>1} a_k$ konvergiert, dann gilt $\lim_{n\to\infty} n^2 a_n = 0$.
- (f) Was ist der Wert der Reihe $\sum_{k\geq 1} 1/(4k^2-1)$?
- $\bigcirc \ \frac{1}{2} \qquad \qquad \bigcirc \ \frac{1}{3}$
- $\bigcirc \frac{1}{4}$
- 3.2. Komplexe Folgen. Entscheiden Sie in den folgenden Fällen, ob die komplexe Folge $(z_n)_{n\geq 1}$ konvergiert oder nicht. Im Falle der Konvergenz, bestimmen Sie den Grenzwert.
- \star (a) $z_n = \left(\frac{1}{1+i}\right)^n$
- $\star(\mathbf{b}) \ z_n = \frac{n^2 + 2 n \cdot i}{n n^2 \cdot i}$
- (c) $z_n = a^n$ für ein $a \in \mathbb{C}$ mit |a| = 1
- **3.3. Folge mit summierbaren Abständen.** Sei $(z_n)_{n\geq 1}$ eine komplexe Folge mit der Eigenschaft, dass

$$|z_{n+1} - z_n| \le \frac{1}{2^n}$$

für alle $n \geq 1$. Zeigen Sie, dass $(z_n)_{n\geq 1}$ konvergiert.

Hinweis: Zeigen Sie, dass $(z_n)_{n\geq 1}$ eine Cauchy-Folge ist.

- **3.4.** Limes superior und Limes inferior I. Sei $x_n = 2^n(1 + (-1)^n) + 1$ für $n \ge 1$. Bestimmen Sie (mit Beweis):
- (a) $\liminf_{n\to\infty} x_n$

 $\star(\mathbf{c}) \lim \inf_{n \to \infty} \frac{x_{n+1}}{x_n}$ $(\mathbf{d}) \lim \sup_{n \to \infty} \frac{x_{n+1}}{x_n}$

(b) $\limsup_{n\to\infty} x_n$

- **3.5. Limes superior und Limes inferior II.** Sei $(x_n)_{n\geq 1}$ eine beschränkte Folge reeller Zahlen. Zeigen Sie, dass $\liminf_{n\to\infty} x_n$ der kleinste Häufungspunkt von $(x_n)_{n\geq 1}$ und $\limsup_{n\to\infty} x_n$ der grösste Häufungspunkt von $(x_n)_{n\geq 1}$ ist.
- **3.6.** * Konvergenz und Häufungspunkte. Sei $(x_n)_{n\geq 1}$ eine beschränkte Folge reeller Zahlen und $c\in\mathbb{R}$. Verwenden Sie den Satz von Bolzano-Weierstrass um zu zeigen:

 $(x_n)_{n\geq 1}$ konvergiert gegen $c\iff \text{jede konvergente Teilfolge von } (x_n)_{n\geq 1}$ hat c als Grenzwert

8. März 2024