Wahrscheinlichkeitstheorie und Statistik

Serie 8 - Lösungen

MC 8-1. Betrachten Sie die gemeinsame Dichte

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{9}, & 1 \le x \le 4 \text{ und } 1 \le y \le 4, \\ 0, & \text{sonst.} \end{cases}$$

(Genau eine Antwort ist in jeder Frage richtig.)

- 1. Sind X und Y identisch verteilt, d.h. haben X und Y die gleiche Verteilung?
 - (a) Ja.
 - (b) Nein.
- 2. Sind X und Y unabhängig?
 - (a) Ja.
 - (b) Nein.
- 3. Sind X und Y i.i.d.?
 - (a) Ja.
 - (b) Nein.
- 4. Welche dieser Funktionen ist die Dichtefunktion f_X von X?
 - (a) $x \mapsto 1$ für $x \in \mathbb{R}$.
 - (b) $x \mapsto \frac{1}{9} \text{ für } x \in \mathbb{R}.$
 - (c) $x \mapsto \frac{1}{3}$ für $x \in \mathbb{R}$.

(d)
$$x \mapsto \begin{cases} \frac{x}{9}, & \text{falls } x \in [1, 4], \\ 1, & \text{falls } x > 4, \\ 0, & \text{sonst.} \end{cases}$$

(e)
$$x \mapsto \begin{cases} \frac{x-1}{3}, & \text{falls } x \in [1,4], \\ 1, & \text{falls } x > 4, \\ 0, & \text{sonst.} \end{cases}$$

(f)
$$x \mapsto \begin{cases} \frac{1}{9}, & \text{falls } x \in [1, 4], \\ 0, & \text{sonst.} \end{cases}$$

(g)
$$x \mapsto \begin{cases} \frac{1}{3}, & \text{falls } x \in [1, 4], \\ 0, & \text{sonst.} \end{cases}$$

(h)
$$x \mapsto \begin{cases} \frac{x}{9}, & \text{falls } x \in [1, 4], \\ 0, & \text{sonst.} \end{cases}$$

5. Welche der Funktionen aus Frage 4 ist die Verteilungsfunktion F_X von X?

Lösung

- 1. (a). Ja, X und Y sind identisch verteilt, weil $F_X = F_Y$ (siehe die Lösungen von 4 und 5).
- 2. (a). Ja, X und Y sind unabhängig. Das folgt aus $f_{X,Y}(x,y) = f_X(x)f_Y(y)$, $\forall x,y \in \mathbb{R}$ (siehe die Lösung von 4 für f_X und f_Y).
- 3. (a). Ja, X und Y sind i.i.d. Das folgt direkt aus 1 und 2, weil i.i.d. nichts anderes bedeutet als unabhängig (englisch independent) und identisch verteilt (englisch identically distributed).
- 4. (g). Die Randdichte von X kann wie folgt berechnet werden:

$$f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) dy = \int_1^4 \frac{1}{9} \mathbf{1}_{[1,4]}(x) dy = \frac{3}{9} \mathbf{1}_{[1,4]}(x) = \begin{cases} \frac{1}{3}, & \text{falls } x \in [1,4], \\ 0, & \text{sonst.} \end{cases}$$

Die Randdichte f_Y von Y berechnet

$$f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx = \int_1^4 \frac{1}{9} \mathbf{1}_{[1,4]}(y) dx = \frac{3}{9} \mathbf{1}_{[1,4]}(y) = \begin{cases} \frac{1}{3}, & \text{falls } y \in [1,4], \\ 0, & \text{sonst.} \end{cases}$$

wie für f_X .

5. (e). Die Verteilungsfunktion F_X von X kann folgendermassen berechnet werden:

$$F_X(a) = \int_{-\infty}^a f_X(x) \, dx = \int_{-\infty}^a \frac{1}{3} \mathbf{1}_{[1,4]}(x) \, dx = \begin{cases} 0, & \text{falls } a < 1, \\ \int_{1}^a \frac{1}{3} \, dx, & \text{falls } a \in [1,4], \\ \int_{1}^4 \frac{1}{3} \, dx, & \text{sonst,} \end{cases}$$
$$= \begin{cases} 0, & \text{falls } a < 1, \\ \frac{a-1}{3}, & \text{falls } a \in [1,4], \\ 1, & \text{sonst.} \end{cases}$$

Die Verteilungsfunktion F_Y von Y berechnet man analog und erhält wegen Symmetrie das gleiche Ergebnis wie für F_X .

Aufgabe 8-2. Wir betrachten einen Kreis mit zufälligem Radius R. Der Radius R sei exponentialverteilt mit Erwartungswert $1/\lambda$. Bestimmen Sie

- (a) die Verteilungsfunktion und Dichtefunktion des Flächeninhalts A des zufälligen Kreises;
- (b) den Erwartungswert von A.

Lösung:

(a) Sei X exponentialverteil mit Parameter μ , d.h. die Dichte von X ist $f_X(x) = \mu e^{-\mu x}$ für $x \ge 0$ und 0 sonst. Es folgt mit partieller Integration, dass

$$\mathbb{E}[X] = \int_0^\infty x \mu e^{-\mu x} dx = -x e^{-\mu x} \Big|_{x=0}^\infty - \int_0^\infty (-e^{-\mu x}) dx = 0 + \frac{1}{\mu} \int_0^\infty \mu e^{-\mu x} dx = \frac{1}{\mu}.$$

Also ist R exponentialverteilt mit Parameter $\mu = \lambda$.

Der Flächeninhalt des Kreises mit Radius R ist gegeben durch die Zufallsvariable $A=\pi R^2$. Die Verteilungsfunktion von A ist

$$F_A(x) = \mathbb{P}[A \le x] = \mathbb{P}\left[R \le \sqrt{x/\pi}\right] = F_R\left(\sqrt{x/\pi}\right) = \int_0^{\sqrt{x/\pi}} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda\sqrt{x/\pi}}, \text{ falls } x \ge 0,$$

und 0 sonst. Die Dichtefunktion ist dann gegeben durch $f_A(x) = \frac{d}{dx} F_A(x) = \frac{\lambda}{2\sqrt{\pi x}} e^{-\lambda \sqrt{x/\pi}}$, falls $x \ge 0$, und 0 sonst. Alternativ ist $F_A(x) = F_R(\sqrt{x/R})$ und damit nach der Kettenregel

$$f_A(x) = f_R\Big(\sqrt{x/\pi}\Big)\frac{d}{dx}\sqrt{\frac{x}{\pi}} = \frac{1}{2\sqrt{x/\pi}}\frac{1}{\pi}f_R\Big(\sqrt{x/\pi}\Big) = \frac{1}{2\sqrt{x\pi}}\lambda e^{-\lambda\sqrt{x/\pi}} \quad \text{für } x \ge 0,$$

und 0 sonst.

(b) Mit partieller Integration und wie in (a) ist

$$\mathbb{E}[A] = \mathbb{E}[\pi R^2] = \int_0^\infty \pi t^2 f_R(t) dt = \pi \lambda \int_0^\infty t^2 e^{-\lambda t} dt = \pi \lambda \left(t^2 \frac{e^{-\lambda t}}{-\lambda} \Big|_{t=0}^\infty - \int_0^\infty 2t \frac{e^{-\lambda t}}{-\lambda} dt \right)$$
$$= 2\pi \int_0^\infty t e^{-\lambda t} dt = \frac{2\pi}{\lambda^2}.$$

Bemerkung: Es ist natürlich auch möglich, den Erwartungswert mit Hilfe der Dichte f_A aus Aufgabe (a) zu bestimmen.

Aufgabe 8-3. Eine Zufallsvariable X habe die Dichtefunktion

$$f(x) = \begin{cases} \frac{c}{(1+x)^5}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

- (a) Finden Sie c und die Verteilungsfunktion von X.
- (b) Finden Sie $\mathbb{E}[X]$ und $\mathbb{E}[X^2]$.

Hinweis: Berechnen Sie zuerst $\mathbb{E}[1+X]$ und $\mathbb{E}[(1+X)^2]$.

(c) Was sind die Verteilungsfunktion und die Dichte von $Y := e^X$?

Lösung:

(a) Es muss gelten $\int_{-\infty}^{\infty} f(x)dx = 1$. Wir berechnen also

$$\int_0^\infty \frac{c}{(1+x)^5} dx = c\left(-\frac{1}{4}(1+x)^{-4}\right)\Big|_{x=0}^\infty = \frac{c}{4}$$

und erhalten so c = 4.

Die Verteilungsfunktion ist gegeben durch

$$F_X(x) = \mathbb{P}[X \le x] = \int_{-\infty}^x f(y)dy = \int_0^x \frac{4}{(1+y)^5} dy = -(1+y)^{-4} \Big|_{y=0}^x = 1 - \frac{1}{(1+x)^4} \text{ für } x \ge 0$$

und 0 sonst.

(b) Wir berechnen zunächst

$$\mathbb{E}[1+X] = \int_{-\infty}^{\infty} (1+x)f(x)dx = \int_{0}^{\infty} \frac{4}{(1+x)^{4}} dx = 4\left(-\frac{1}{3}(1+x)^{-3}\right)\Big|_{x=0}^{\infty} = \frac{4}{3},$$

$$\mathbb{E}[(1+X)^{2}] = \int_{0}^{\infty} \frac{4}{(1+x)^{3}} dx = 4\left(-\frac{1}{2}(1+x)^{-2}\right)\Big|_{x=0}^{\infty} = 2.$$

Damit erhalten wir

$$\mathbb{E}[X] = \mathbb{E}[1+X] - 1 = \frac{1}{3}, \text{ und}$$

$$\mathbb{E}[X^2] = \mathbb{E}[(1+X)^2] - 2\mathbb{E}[X] - 1 = 2 - \frac{2}{3} - 1 = \frac{1}{3}.$$

(c) Wegen $X \geq 0$ ist $Y = e^X \geq 1$. Für y < 1 gilt für die Verteilungsfunktion F_Y von Y also

$$F_Y(y) = \mathbb{P}[Y \le y] = \mathbb{P}[e^X \le y] \le \mathbb{P}[e^X < 1] = \mathbb{P}[X < 0] = 0.$$

Für $y \ge 1$ erhält man

$$F_Y(y) = \mathbb{P}[e^X \le y] = \mathbb{P}[X \le \log y] = F_X(\log y) = 1 - \frac{1}{(1 + \log y)^4}.$$

Durch Differenzieren der Verteilungsfunktion erhalten wir die Dichte f_Y von Y als:

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \begin{cases} 0 & \text{für } y < 1, \\ \frac{4}{y(1 + \log y)^5} & \text{für } y \ge 1. \end{cases}$$

Aufgabe 8-4. Seien $S \sim \mathcal{N}(-5, 4^2)$ und $T \sim \mathcal{N}(10, 3^2)$ unabhängig.

Hinweis: Sie können die folgende Tatsache verwenden: Wenn X und Y unabhängig und normalverteilt sind, dann ist auch X + Y normalverteilt.

- (a) Berechnen Sie $\mathbb{P}[S < T]$.
- (b) Wäre die Berechnung von $\mathbb{P}[S < T]$ auch ohne die Unabhängigkeits-Annahme korrekt?
- (c) Berechnen Sie die Varianz Var[R] von R := S 2T.
- (d) Wäre die Berechnung von Var[R] auch ohne die Unabhängigkeits-Annahme korrekt?

Seien $U \sim \text{Unif}[1,3]$ und $V \sim \text{Unif}[0,4]$ (d.h. $f_U(u) = \frac{1}{2}\mathbf{1}_{[1,3]}(u)$ und $f_V(v) = \frac{1}{4}\mathbf{1}_{[0,4]}(v)$) unabhängig.

- (e) Berechnen Sie $\mathbb{E}[2U+V^3]$.
- (f) Wäre die Berechnung von $\mathbb{E}[2U+V^3]$ auch ohne die Unabhängigkeits-Annahme korrekt?

Lösung:

(a) $\mathbb{P}[S < T] = \mathbb{P}[S - T < 0]$. Nun sind aber S und -T unabhangig wie S und T, und $-T \sim \mathcal{N}(-10, 3^2)$. Also, $S - T \sim \mathcal{N}(-5 - 10, 4^2 + 3^3) = \mathcal{N}(-15, 25)$. Wir betrachten die normierte Zufallsvariable $Z := \frac{S - T + 15}{5} \sim \mathcal{N}(0, 1)$ und berechnen

$$\mathbb{P}[S < T] = \mathbb{P}[S - T < 0] = \mathbb{P}\left[\frac{S - T + 15}{5} < \frac{15}{5}\right] = \Phi(3) \approx 0.9987.$$

- (b) Nein. Wählt man z.B. $T := \frac{55}{4} + \frac{3}{4}S$, so ist $T \sim \mathcal{N}(10, 3^2)$ und $S T = \frac{1}{4}S \frac{55}{4} \sim \mathcal{N}(-15, 1)$, also $S T + 15 \sim \mathcal{N}(0, 1)$ und damit $\mathbb{P}[S T < 0] = \Phi(15) > \Phi(3)$.
- (c) Wegen unabhängigkeit von S und -2T ist $Var[R] = Var[S 2T] = Var[S] + 2^2Var[T] = 4^2 + 2^2 3^2 = 16 + 6^2 = 52$.
- (d) Im Allgemeinen ist die Antwort Nein. Falls aber S und T unkorreliert sind (und damit auch S und -2T), so bleibt das Ergebnis gleich.
- (e) Zunächst berechnen wir

$$\mathbb{E}[U] = \int_{-\infty}^{\infty} u f_U(u) du = \int_{1}^{3} \frac{u}{2} du = \frac{u^2}{4} \Big|_{u=1}^{3} = 2.$$

Alternativ können wir verwenden, dass für $X \sim \text{Unif}[a, b]$ gilt $\mathbb{E}[X] = (a + b)/2$. Daraus erhalten wir direkt

$$\mathbb{E}[U] = \frac{1+3}{2} = 2.$$

Weiter ist

$$\mathbb{E}[V^3] = \int_{-\infty}^{\infty} v^3 f_V(v) dv = \int_0^4 \frac{v^3}{4} dv = \frac{1}{4 \times 4} 4^4 = 4^2 = 16.$$

Mit der Linearität des Erwartungswertes folgt also

$$\mathbb{E}[2U + V^3] = 2\mathbb{E}[U] + \mathbb{E}[V^3] = 4 + 4^2 = 20.$$

(f) Ja, denn wir haben Linearität, aber nicht Unabhängigkeit verwendet. Das Ergebnis ist also dasselbe, wenn U und V nicht unabhängig sind.

Aufgabe 8-5. Gegeben sei ein Rechteck mit den zufälligen Seitenlängen X und Y. Die gemeinsame Dichtefunktion von X und Y ist gegeben durch

$$f_{X,Y}(x,y) := \begin{cases} C(x^2 + y^2), & 0 \le x, y \le 1, \\ 0, & \text{sonst.} \end{cases}$$

- (a) Bestimmen Sie den Parameter C.
- (b) Berechnen Sie die Randdichten von X und Y.
- (c) Sind X und Y unabhängig? Begründen Sie Ihre Antwort.
- (d) Berechnen Sie die Wahrscheinlichkeit, dass die Seite X mehr als doppelt so lang wie die Seite Y ist.

(e) Berechnen Sie die erwartete Fläche des Rechtecks.

Lösung:

(a) Wegen $\iint f_{X,Y}(x,y)dx dy = 1$ berechnen wir

$$\int_0^1 \int_0^1 C(x^2 + y^2) dx \, dy = C \int_0^1 \left(\frac{1}{3} + y^2\right) dy = C\left(\frac{1}{3} + \frac{1}{3}\right) = \frac{2}{3}C.$$

Damit findet man $C = \frac{3}{2}$.

(b) Für die Randdichte von X hat man für $0 \le x \le 1$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy = \frac{3}{2} \int_{0}^{1} (x^2 + y^2)dy = \frac{3}{2}x^2 + \frac{1}{2}.$$

Also hat man

$$f_X(x) = \begin{cases} \frac{3}{2}x^2 + \frac{1}{2}, & 0 \le x \le 1, \\ 0, & \text{sonst.} \end{cases}$$

Für die Randdichte von Y hat man für $0 \le y \le 1$ völlig analog

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx = \frac{3}{2} \int_{0}^{1} (x^2 + y^2)dx = \frac{3}{2}y^2 + \frac{1}{2}.$$

Also hat man

$$f_Y(y) = \begin{cases} \frac{3}{2}y^2 + \frac{1}{2}, & 0 \le y \le 1, \\ 0, & \text{sonst.} \end{cases}$$

- (c) X und Y sind unabhängig voneinander genau dann, wenn $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ gilt, was nicht der Fall ist. Folglich sind X und Y nicht unabhängig.
- (d)

$$\begin{split} \mathbb{P}[X > 2Y] &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{1}_{\{x > 2y\}} f_{X,Y}(x,y) dx \, dy = \frac{3}{2} \int_{0}^{1} \int_{0}^{\frac{x}{2}} (x^{2} + y^{2}) dy \, dx \\ &= \frac{3}{2} \int_{0}^{1} \left(\frac{x^{3}}{2} + \frac{x^{3}}{2^{3} \times 3} \right) dx = \frac{3}{2} \left(\frac{1^{4}}{4 \times 2} + \frac{1^{4}}{4 \times 2^{2} \times 3} \right) \\ &= \frac{3}{2^{4}} \left(1 + \frac{1}{2^{2} \times 3} \right) = \frac{3}{2^{4}} \left(\frac{13}{2^{2} \times 3} \right) = \frac{13}{2^{6}} = \frac{13}{64} \approx 0.2031. \end{split}$$

(e) Es gilt

$$\mathbb{E}[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x,y) dx \, dy = \frac{3}{2} \int_{0}^{1} \int_{0}^{1} (x^{3}y + xy^{3}) dx \, dy = \frac{3}{2} \int_{0}^{1} \left(\frac{1}{4}y + \frac{1}{2}y^{3}\right) dy$$
$$= \frac{3}{2} \left(\frac{1}{8} + \frac{1}{8}\right) = \frac{3}{8}.$$

Tabelle der Standardnormalverteilung

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Zum Beispiel ist $\mathbb{P}[Z \leq 1.96] = 0.975.$