Serie 5

ZUM AUSWAHLAXIOM

20. Zeige, dass jede abzählbare Vereinigung von abzählbaren Mengen abzählbar ist und erkläre, wieso im Beweis das Auswahlaxiom (bzw. eine Form davon) benötigt wird.

Bemerkung: In gewissen Modellen von ZF, in denen AC nicht gilt, ist

$$\mathbb{R} = \bigcup_{n \in \omega} R_n$$

mit R_n abzählbar für alle $n \in \omega$.

- 21. Seien (A) und (B) die folgenden Aussagen:
 - (A) Jedes Erzeugendensystem eines Vektorraums V enthält eine Basis von V.
 - (B) Jeder Vektorraum besitzt eine Basis.

Zeige die Aussagen (A) und (B) jeweils

- (a) mit dem Kuratowski-Zorn Lemma,
- (b) und mit dem Teichmüller Prinzip.

Bemerkung: Die Aussage (A) ist bzgl. den Axiomen 0-6 äquivalent zu AC, und die Aussage (B) ist bzgl. ZF äquivalent zu AC; (A) ist also etwas stärker als (B).

22. Sei V der Vektorraum \mathbb{R} über dem Körper \mathbb{Q} .

Zeige, dass es eine lineare Funktion $f: V \to V$ gibt, welche nirgends stetig ist.

Hinweis: Sei $\{a_{\lambda}: \lambda \in \Lambda\}$ eine Basis des Vektorraums V. Definiere $f: V \to V$ mit $f(a_{\lambda}) = 1$ für alle $\lambda \in \Lambda$.