Prof. Dr. Lorenz Halbeisen

Musterlösung Serie 4

ZUR ÜBERABZÄHLBARKEIT VON ${\mathbb R}$

16. Eine reelle Zahl $r \in \mathbb{R}$ heisst *algebraisch* falls r eine Nullstelle eines Polynoms mit ganzzahligen Koeffizienten ist.

Zeige, dass die Menge der algebraischen Zahlen abzählbar ist.

Lösung: Sei \mathbb{A} die Menge der algebraischen Zahlen und sei $\mathbb{Z}[x]_{\leq n}$ die Menge, welche aus allen Polynomen höchstens vom Grad n besteht, dessen Koeffizienten in \mathbb{Z} liegen und höchstens den Betrag n haben. Definiere

$$A_n := \{ y \in \mathbb{R} \mid \exists f \in \mathbb{Z}[x]_{\leq n} \land f(y) = 0 \},$$

dann gilt $\mathbb{A} = \bigcup_{n \in \omega} A_n$. Nun ist $\mathbb{Z}[x]_{\leqslant n}$ endlich für jedes $n \in \omega$. Ausserdem hat jedes Polynom nur endlich viele Nullstellen, also finden wir $m_n \in \omega$, sodass alle Elemente $r_0 < r_1 < \cdots < r_{m_n}$ von A_n der Grösse nach geordnet werden können. Wir finden also für jedes $n \in \omega$ eine Surjektion $f_n : \omega \twoheadrightarrow A_n$ indem wir beispielsweise $f_n(k) = r_k$ definieren, falls $k \leqslant m_n$ und $f_n(k) = 0$, falls $k > m_n$. Definiere $f : \omega \times \omega \to \mathbb{A}$ durch $f(n,k) = f_n(k)$, dann ist f ebenfalls surjektiv. Da $\omega \times \omega$ abzählbar ist, finden wir auch eine Surjektion $g : \omega \to \omega \times \omega$. Dann ist $f \circ g : \omega \to \mathbb{A}$ als Komposition von surjektiven Funktionen ebenfalls surjektiv und somit ist die Menge der algebraischen Zahlen abzählbar.

17. Zeige, dass \mathbb{R}^+ überabzählbar ist.

Hinweis: Für $x \subseteq \omega$ sei

$$\beta_x := \bigcup \left\{ \alpha_{p_k} : k \in \omega \land p_k = 1 + \sum_{n \in (k \cap x)} \frac{1}{3^n} \right\}.$$

Lösung: Zeige zuerst, dass eine Injektion von $\mathscr{P}(\omega)\setminus\{\emptyset\}$ zu \mathbb{R}^+ existiert, welche aber nicht surjektiv ist. Definiere dazu die Menge

$$\beta_x := \left\{ q \in \mathbb{Q}^+ : q < \sum_{n \in x} \frac{1}{3^n} \right\}$$

für jedes $x \subseteq \omega$ mit $x \neq \emptyset$. Es ist einfach zu sehen, dass die β_x Dedekind'sche Schnitte sind. Also können wir eine Abbildung $f: \mathscr{P}(\omega) \setminus \{\emptyset\} \to \mathbb{R}^+$ definieren mit $f(x) = \beta_x$. Da die Summen der Mengen β_x für jedes x verschieden sind, was die Abbildung f injektiv macht. Surjektiv ist sie hingegen nicht, da es z.B. kein x gibt, so dass sie $\beta_x = 2$ gilt (die Summe in der Definition von β_x ist beschränkt).

Wir zeigen nun per Widerspruch, dass \mathbb{R}^+ überabzählbar ist. Angenommen \mathbb{R}^+ ist abzählbar, dann existiert eine Surjektion $g:\omega\to\mathbb{R}^+$. Da f injektiv ist, aber nicht surjektiv, können wir eine Linksinverse f^{-1} zu f folgendermassen definieren: Für $r\in\mathbb{R}^+$ und $x\in\mathscr{P}(\omega)\backslash\{\varnothing\}$ setzen wir $f^{-1}(r)=x$ genau dann, wenn f(x)=r. Falls es kein solches x gibt für $r\in\mathbb{R}^+$, dann setzten wir $f^{-1}(r)=\varnothing$. Wir können so eine Surjektion $f^{-1}:\mathbb{R}^+\to\mathscr{P}(\omega)$ konstruieren. Nun ist die Verknüpfung zweier Surjektionen $f^{-1}\circ g:\omega\to\mathscr{P}(\omega)$ wieder eine Surjektion, was einem Widerspruch zur Überabzählbarkeit von $\mathscr{P}(\omega)$ entspricht.

18. Konstruiere eine überabzählbare Menge $X \subseteq \mathcal{P}(\mathbb{Q})$, sodass gilt:

$$(X, \subsetneq) \models \mathsf{DLO}$$

Bemerkung: Obwohl $\mathbb Q$ abzählbar ist, besitzt $\mathscr P(\mathbb Q)$ überabzählbare Ketten von grösserwerdenden Mengen.

Lösung: Wir definieren $X := \mathbb{R}^+$, dann wissen wir von der vorherigen Aufgabe bereits, dass X überabzählbar ist. Ausserdem erfüllen die rellen Zahlen die Axiome der dichten linearen Ordnung.

- **19**. (a) Konstruiere eine Funktion $f: \mathbb{R} \to \mathbb{R}$ die nirgends stetig ist.
 - (b) Konstruiere eine Funktion $g: \mathbb{R} \to \mathbb{R}$ die auf $\mathbb{R} \setminus \mathbb{Q}$ stetig und auf \mathbb{Q} unstetig ist. *Lösung*:
 - (a) Definiere

$$f(x) = \begin{cases} 1 & \text{falls } x \in \mathbb{Q} \\ 0 & \text{falls } x \notin \mathbb{Q} \end{cases},$$

dann ist f nirgends stetig: Sei $x_0 \in \mathbb{R}$ beliebig. Damit f in x_0 stetig wäre, müsste für ein beliebiges $\varepsilon > 0$ ein $\delta > 0$ existieren, sodass $|f(x) - f(x_0)| < \varepsilon$ für $x \in (x_0 - \delta, x_0 + \delta)$. Wenn nun $\varepsilon < 1$, dann müsste Intervalle existieren, welche nur Zahlen aus \mathbb{Q} oder $\mathbb{R} \setminus \mathbb{Q}$ enthalten. Da aber jedes Intervall Elemente aus \mathbb{Q} und $\mathbb{R} \setminus \mathbb{Q}$ enthält, folgt ein Widerspruch.

(b) Definiere

$$g(x) = \begin{cases} \frac{1}{q} & \text{falls } x = \frac{p}{q} \in \mathbb{Q} \text{ mit } p, q \text{ teilerfremd} \\ 0 & \text{falls } x \notin \mathbb{Q} \end{cases}.$$

Nun kann g auf $\mathbb Q$ nicht stetig sein, weil jedes Intervall beliebig viele Elemente aus $\mathbb R\setminus\mathbb Q$ enthält. Hingegen ist g auf ganz $\mathbb R\setminus\mathbb Q$ stetig: Für ein beliebiges $x_0\in\mathbb R\setminus\mathbb Q$ und $\varepsilon>0$ finden wir nach dem archimedischen Axiom ein $n\in\omega$ so, dass $\frac{1}{n}<\varepsilon$. Wählen wir nun ein $\delta^*<\frac{1}{2}\varepsilon$, so kann im Intervall $(x_0-\delta^*,x_0+\delta^*)$ höchstens endlich viele Brüche der Form $\frac{z}{k}$ für $z\in\mathbb Z$ und $k=1,2,3,\ldots,n-1$ enthalten sein, da die Länge des Intervalls kleiner ist als ε . Falls nun so ein Bruch in $(x_0-\delta^*,x_0+\delta^*)$ enthalten ist, so existiert solch ein Bruch q mit kürzerster Distanz zu x_0 . Wir setzen nun $\delta:=\min\{\delta^*,\frac{|x_0-q|}{2}\}$ und es folgt $|f(x)-f(x_0)|=|f(x)|<\varepsilon$ für jedes $x\in(x_0-\delta,x_0+\delta)$.