Lineare Algebra - Übungen 11

1. Sei $B = (v_1, ..., v_n)$ eine geordnete Basis von V und $B' = (w_1, ..., w_m)$ eine geordnete Basis von W. Sei $B'^* = (w_1^*, ..., w_m^*)$ die zu B' duale Basis von W^* . Zeigen Sie, dass für jede lineare Abbildung $f \colon V \to W$ gilt

$$([f]^{\mathcal{B}}_{\mathcal{B}'})_{ij}=w_i^*(f(v_j))\quad ext{für alle } 1\leq i\leq m,\ 1\leq j\leq n.$$

2. Finden Sie die Annulatoren der folgenden Unterräume

(a)
$$U_1 = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \end{pmatrix} \right\rangle \leq \mathbb{R}^2$$

(b)
$$U_2 = \left\langle \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \right\rangle \leq \mathbb{R}^3$$

(c)
$$U_3 = \left\langle \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix} \right\rangle \leq \mathbb{R}^3$$

(d)
$$U_4 = \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \end{pmatrix} \right\rangle \leq \mathbb{R}^4$$

3. Sei $n \ge 1$. Dann definieren wir das kanonische Skalarprodukt auf \mathbb{R}^n als

$$\langle \cdot, \cdot \rangle \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R},$$

 $\langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$

- (a) Sei $u \in \mathbb{R}^n$ gegeben. Zeigen Sie, dass $\ell_u : \mathbb{R}^n \to \mathbb{R}$, $v \mapsto \langle u, v \rangle$ eine lineare Abbildung ist.
- (b) Es sei $\mathcal{B} = \{b_1, \dots, b_n\}$ eine Basis von \mathbb{R}^n . Zeigen Sie, dass $\{\ell_{b_1}, \dots, \ell_{b_n}\}$ eine Basis des Dualraums $(\mathbb{R}^n)^*$ ist.
- (c) Ein Vektor $v \in \mathbb{R}^n$ ist *orthogonal* zu $u \in \mathbb{R}^n$, falls $v \in \ker(\ell_u)$ gilt. Zeigen Sie, dass es einen Isomorphismus

$$\langle u \rangle^{\perp} \cong \ker(\ell_u)$$

- gibt. Das heisst, der Annulator von $\langle u \rangle$ ist Isomorph zum Untervektorraum aller Vektoren, die orthogonal zu u sind.
- (d) Folgern Sie, dass für einen Unterraum $U \leq \mathbb{R}^n$ gilt

$$U^{\perp} \cong \{ v \in \mathbb{R}^n \mid v \in \ker(\ell_u), \, \forall u \in U \}.$$

(e) Bestimmen Sie diejenigen Unterräume von \mathbb{R}^3 , die den Annulatoren der Unterräume

$$U_1 = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle, \quad U_2 = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\rangle$$

entsprechen.

- 4. Es sei V der Vektorraum der reellen Polynome von Grad kleiner gleich 3. Für $i \in \{0,1,2,3\}$ definieren wir die Abbildungen $f_i: V \to \mathbb{R}$ durch $f_i(p) = \int_0^1 p^{(i)}(t) \, dt$ für alle Polynome $p \in V$ und wobei $p^{(i)}$ die i-te Ableitung des Polynomes p ist.
 - (a) Finden Sie alle reellen Zahlen $x \in \mathbb{R}$, für die die Evaluationsabbildung $\operatorname{ev}_x \colon V \to \mathbb{R}$, $p \mapsto p(x)$ ein Element von V^* beschreibt.
 - (b) Zeigen Sie, dass (f_0, f_1, f_2, f_3) eine Basis des Dualraumes V^* von V ist.
 - (c) Drücken Sie die Elemente der zur Standardbasis $(1, t, t^2, t^3)$ dualen Basis des Dualraumes V^* als Linearkombination der Elemente der Basis (f_0, f_1, f_2, f_3) aus.
- 5. Gegeben seien zwei lineare Abbildungen $\varphi_1(x)=-6x_1-x_2+5x_3+2x_5$ und $\varphi_2(x)=-7x_1-2x_2+6x_3+x_4+2x_5$ von \mathbb{R}^5 nach \mathbb{R} . Sei V der Unterraum $V=\{x\in\mathbb{R}^5\mid \varphi_1(x)=\varphi_2(x)=0\}$.
 - (a) Zeigen Sie, dass $v_1:=\begin{pmatrix}1\\1\\1\\1\\1\end{pmatrix}$ und $v_2:=\begin{pmatrix}2\\0\\2\\0\\1\end{pmatrix}$ in V liegen.
 - (b) Ergänzen Sie v_1 und v_2 zu einer Basis von V.
 - (c) Bestimmen Sie eine *Orthonormalbasis* von V, bezüglich dem kanonischem Skalarprodukt. Also eine Basis \mathcal{B} , für die verschiedene Elemente $u,v\in\mathcal{B}$ orthogonal zueinander stehen, das heisst $\langle u,v\rangle=0$ und sodass $\langle u,u\rangle=1$ für alle $u\in\mathcal{B}$ gilt.