Serie 24

NORMALE/SELBSTADJUNGIERTE ABBILDUNGEN, SPEKTRALTHEORIE

1. Betrachte die reelle symmetrische Matrix

$$G := \begin{pmatrix} 3 & -2 & 1 & -2 \\ -2 & 3 & -2 & 1 \\ 1 & -2 & 3 & -2 \\ -2 & 1 & -2 & 3 \end{pmatrix}$$

Führe für G eine Hauptachsentransformation durch, d. h., finde eine orthogonale Matrix S, so dass S^TGS eine Diagonalmatrix ist.

Hinweis: Alle Eigenwerte von G sind ganzzahlig.

- 2. Angenommen, $S, T \in \text{Hom}(V)$ sind selbstadjungiert. Beweisen Sie, dass ST genau dann selbstadjungiert ist, wenn ST = TS.
- 3. Seien V ein endlich-dimensionaler unitärer Vektorraum und $T \in \text{End}(V)$ ein normaler Operator. Für einen Unterraum $W \subseteq V$ schreiben wir P_W für die orthogonale Projektion auf W.
 - (a) Beweise:

Theorem. Es existieren endlich viele komplexe Zahlen $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$, und paarweise orthogonale Unterräume W_1, \ldots, W_k von V, sodass

$$T = \lambda_1 P_{W_1} + \dots + \lambda_k P_{W_k}.$$

- (b) Zeige, dass für jeden Unterraum U von V die Projektion P_U selbstadjungiert ist.
- 4. Beweisen Sie, dass ein normaler Operator auf einem komplexen endlichdimensionalen Inner-Produkt-Raum genau dann selbstadjungiert ist, wenn alle seine Eigenwerte reell sind.
- 5. Angenommen, dass U einen endlich-dimensionalen reellen Vektorraum ist und $T \in \text{Hom}(U)$. Zeigen Sie, dass U eine Basis aus Eigenvektoren hat, genau dann, wenn es ein Inneres Produkt gibt, das U zu einem selbstadjungierten Operator macht.

6. Das Ziel dieser Übung ist es, den folgenden Satz zu beweisen:

Satz. Sei V ein endlich-dimensionaler komplexer Vektorraum und \mathcal{F} eine nichtleere Menge von kommutierenden normalen Operatoren in $\operatorname{Hom}(V)$. Mit anderen Worten, für alle $A, B \in \mathcal{F}$ gilt AB = BA und $AA^* = A^*A$. Es existiert eine Orthonormalbasis von V, bezeichnet mit $C = \{v_1, \ldots, v_n\}$, sodass für alle $1 \leq j \leq n$ und für alle $A \in \mathcal{F}$ der Vektor v_j ein Eigenvektor von A ist. Solche Operatoren werden simultan diagonalisierbar genannt.

- (a) Sei U ein linearer Unterraum von V und $A \in \text{Hom}(V)$ mit $AU \subseteq U$. Beweisen Sie, dass A einen Eigenvektor in U hat.
- (b) Sei U ein linearer Unterraum von V und $\mathcal{G} \subset \operatorname{Hom}(V)$ eine Familie von kommutierenden Operatoren, sodass für alle $A \in \mathcal{G}$ gilt $AU \subseteq U$. Beweisen Sie, dass es einen nicht-null Vektor $v \in U$ gibt, der ein Eigenvektor für jedes $A \in \mathcal{G}$ ist.
- (c) Verwenden Sie (a) und (b), um den obigen Satz zu beweisen.

Multiple Choice Fragen.

1. Seien A und B komplexe selbstadjungierte $n \times n$ Matrizen, und sei $\lambda \in \mathbb{C}$. Welche der folgenden Aussagen ist im Allgemeinen korrekt? $\bigcirc A + B$ ist selbstadjungiert. $\bigcirc \lambda A$ ist selbstadjungiert. $\bigcirc \lambda A$ ist normal. 2. Seien A und B komplexe selbstadjungierte $n \times n$ Matrizen, und sei $\lambda \in \mathbb{C}$. Welche der folgenden Aussagen ist im Allgemeinen korrekt? \bigcirc AB ist selbstadjungiert. $\bigcirc AB + BA$ ist selbstadjungiert. $\bigcirc AB - BA$ ist normal. \bigcirc ABA ist selbstadjungiert. 3. Seien A eine normale Matrix und $p \in \mathbb{C}[t]$ ein polynom. Welche der folgenden Aussagen ist im Allgemeinen korrekt? $\bigcap p(A)^* = p(A^*).$ $\bigcap A^i(A^*)^j = (A^*)^j A^i.$ $\bigcap p(A)$ ist normal. \bigcirc Jeder Eigenwert λ von A ist auch ein Eigenwert von p(A). \bigcirc Jeder Eigenvektor v von A ist auch ein Eigenvektor von p(A).