

Aufgaben und Lösungsvorschlag Aufgabe 1

Es ist jeweils **genau eine** Antwort korrekt: Für genau die richtige Antwort gibt es **einen** Punkt. Punktabzug bei falschen Antworten gibt es **nicht**.

Füllen Sie für jede Antwort das entsprechende Kästchen am Multiple-Choice Antwortheft aus.

Für die gesamte Aufgabe nehmen wir an, dass V ein Vektorraum über einem Körper \mathbb{K} ist.

1.MC1 [1 Punkt] Die Menge

$$\left\{ \begin{pmatrix} 6\\1\\2 \end{pmatrix}, \begin{pmatrix} 9\\1\\3 \end{pmatrix}, \begin{pmatrix} 3\\0\\1 \end{pmatrix} \right\}$$

ist linear unabhängig.

- (A) Richtig
- (B) Falsch

Lösung:

Falsch.

- **1.MC2** [1 Punkt] Betrachte die Teilmengen $S_1, S_2 \subseteq V$, so dass $S_1 \subset S_2$ aber $S_1 \neq S_2$ gilt. Falls S_1 ein Erzeugendensystem für V ist, ist dann auch S_2 ein Erzeugendensystem für V.
 - (A) Richtig
 - (B) Falsch

Lösung:

Richtig.

1.MC3 [1 Punkt] Es seien U, V, W Vektorräume über einem Körper \mathbb{K} , und es sei $S \in \text{Hom}(U, V)$ und $T \in \text{Hom}(V, W)$. Dann gilt

$$\dim(\operatorname{Ker}(T \circ S)) = \dim(\operatorname{Ker}(S)) + \dim(\operatorname{Ker}(T)).$$

- (A) Richtig
- (B) Falsch

Falsch.

- **1.MC4** [1 Punkt] Es sei W ein Vektorraum über dem Körper \mathbb{K} , und $T \in \text{Hom}(V, W)$. Falls T surjektiv ist, dann ist die duale Abbildung $T^* \colon W^* \to V^*$ auch surjektiv.
 - (A) Richtig
 - (B) Falsch

Lösung:

Falsch.

1.MC5 [1 Punkt] Es seien $S_1, S_2 \subseteq V$. Dann gilt

$$\langle S_1 \cap S_2 \rangle \subseteq \langle S_1 \rangle \cap \langle S_2 \rangle$$

- (A) Richtig
- (B) Falsch

Lösung:

Richtig.

1.MC6 [1 Punkt] Betrachte die folgenden Permutationen einer Menge mit 5 Elementen.

$$\sigma_1 = (15)(14)(15)$$
 $\sigma_2 = (234)(15)$
 $\sigma_3 = (312)$
 $\sigma_4 = (12345)(34)$

Welche dieser Permutationen hat das Vorzeichen +1?

- (A) σ_1
- (B) σ_2
- (C) σ_3
- (D) σ_4

Lösung:

(C).

- **1.MC7** [1 Punkt] Für welches $x \in \mathbb{R}$ gilt det $\begin{pmatrix} 1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix} = 1$?
 - (A) x = -2
 - (B) x = 2
 - (C) x = -1
 - (D) x = 1

(B).

1.MC8 [1 Punkt] Es sei W ein Vektorraum über einem Körper \mathbb{K} . Der Graph $\Gamma(f)$ einer Abbildung $f: V \to W$, ist definiert als die Menge

$$\Gamma(f) = \{(v, f(v)) \mid v \in V\} \subseteq V \times W.$$

Für welche der folgenden Abbildungen ist deren Graph $\Gamma(\cdot)$ kein linearer Unterraum des Vektorraums $V \times W$?

- (A) $f: \mathbb{C} \to \mathbb{C}$, f(z) = z.
- (B) $g: \mathbb{R}[x]^{\leq 3} \to \mathbb{R}$, g(p(x)) = Dp(0), wobei D die Ableitungsabbildung ist.
- (C) $h: \mathbb{R}^3 \to \mathbb{R}^3$, die Reflexion an der xy-Achse.
- (D) Alle Graphen der obigen Abbildungen ergeben lineare Unterräume von $V \times W$.

Lösung:

(D).

Schreiben Sie Ihre Antworten direkt in die dafür vorhergesehenen Boxen im Antwortheft. Sie müssen Ihre Antworten nicht begründen. Nur die Antworten, die sich in den bereitgestellten Boxen befinden, werden bewertet.

2.A1 [2 Punkte] Es sei \mathcal{B} die Standardbasis des \mathbb{R}^3 . Es seien $f, g \in \operatorname{End}(\mathbb{R}^3)$, sodass

$$[f]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 2 & 0 & 2 \\ 3 & 2 & 0 \\ 2 & 3 & 2 \end{pmatrix} \quad \text{and} \quad [g]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 2 & 0 & 2 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{pmatrix}$$

gilt.

Berechnen Sie die Abbildungsmatrix der Kompositionsabbildung $f \circ g$ bezüglich der Basis \mathcal{B} .

Lösung:

$$[f \circ g]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 8 & 4 & 8 \\ 10 & 4 & 6 \\ 14 & 10 & 8 \end{pmatrix}$$

2.A2 [2 Punkte] Es sei V ein Vektorraum über dem Körper \mathbb{K} und $U \leq V$ ein Unterraum. Definieren Sie die Elemente des Quotientenraumes sowie Addition und Skalar-Multiplikation. Zeigen Sie, dass die beiden Operationen wohl-definiert sind.

Lösung:

Wir definieren den Quotientenraum V/U wie folgt:

Die Elemente von V/U sind die Nebenklassen von U in V, das heisst, sie sind die Untermengen von V von der Form v+U fuer $v\in V$. Wir schreiben [v] fuer die Klasse v+U.

Die Addition und Skalarmultiplikation sind definiert durch

$$[y_1] + [v_2] = [v_1 + v_2]$$
 und $\alpha [v] = [\alpha v].$

Die Nebenklassen von U in V sind die Äquivalenzklassen folgender Äquivalenzrelation auf V:

$$v \sim w$$
 genau dann, wenn $v - w \in U$.

Dies bedeutet, dass jedes $v \in V$ in genau einer Nebenklasse liegt, nämlich in der Nebenklasse [v] = v + U.

Wir muessen zeigen, dass Addition und Multiplikation wohldefiniert sind:

(i) es seien $v_1, v_1', v_2, v_2' \in V$, und nimm an, dass $[v_1] = [v_1']$ und $[v_2] = [v_2']$. Wir muessen zeigen, dass

$$[v_1] + [v_2] = [v'_1] + [v'_2] \Leftrightarrow [v_1 + v_2] = [v'_1 + v'_2] \Leftrightarrow v_1 + v_2 - v'_1 - v'_2 \in U.$$

Doch das ist klar, da $v_1 - v_1' \in U$ und $v_2 - v_2' \in U$.

(ii) Es seien $v, v' \in V$ so dass [v] = [v'], und es sei $\alpha \in K$. Wir mussen zeigen, dass

$$\alpha[v] = \alpha[v'] \quad \Leftrightarrow \quad [\alpha v] = [\alpha v'] \quad \Leftrightarrow \quad \alpha(v - v') \in U.$$

Doch da $v - v' \in U$ und U ein Unterraum ist, gilt $\alpha(v - v') \in U$.

2.A3 [3 Punkte] Finden Sie alle Werte von $t \in \mathbb{R}$ für welche die Matrix

$$\begin{pmatrix} 4t & 0 & 0 & 2 \\ 5 & t & 1 & 0 \\ 0 & 2 & t & 0 \\ 1 & 0 & 0 & t \end{pmatrix} \in M_{4\times 4}(\mathbb{R})$$

nicht Rang 4 hat.

Lösung:

$$t = \pm \frac{1}{\sqrt{2}}, \ t = \pm \sqrt{2}$$

2.A4 [2 Punkte] Schreiben Sie die lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^5$,

$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} := \begin{pmatrix} x_1 + x_2 + 3x_3 \\ 2x_1 + 2x_2 + 6x_3 \\ 2x_1 + 3x_2 + 8x_3 \\ -x_1 + x_2 + x_3 \\ 3x_1 + x_2 + 5x_3 \end{pmatrix}.$$

als Linksmultiplikation mit einer Matrix A und finden Sie je eine Basis ihres Kerns und ihres Bildes.

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 2 & 6 \\ 2 & 3 & 8 \\ -1 & 1 & 1 \\ 3 & 1 & 5 \end{pmatrix}$$

Basis des Kerns:
$$\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$

Basis des Kerns:
$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
Basis des Bildes:
$$\begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 1 \end{pmatrix}$$

2.A5 [3 Punkte] Es sei t ein reeller Parameter, für den wir die Unterräume

$$P_{1} = \{(x, y, z) \in \mathbb{R}^{3} \mid 2x + y + tz = 0\},\$$

$$P_{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid 2x + y + 2tz = 0\},\$$

$$P_{3} = \{(x, y, z) \in \mathbb{R}^{3} \mid x + ty + z = 0\}$$

definieren.

Beschreiben Sie die Schnittmenge dieser drei Unterräume in Abhängigkeit des Parameters t.

Falls
$$t = 0$$
:
$$P_1 \cap P_2 \cap P_3 = \{(-s, 2s, s) \in \mathbb{R}^3 \mid s \in \mathbb{R}\}$$
Falls $t = \frac{1}{2}$:
$$P_1 \cap P_2 \cap P_3 = \{(s, -2s, 0) \in \mathbb{R}^3 \mid s \in \mathbb{R}\}$$
Falls $t \neq 0$ und $t \neq \frac{1}{2}$:
$$P_1 \cap P_2 \cap P_3 = \{(0, 0, 0) \in \mathbb{R}^3\}$$

3.A1 [2 Punkte] Es sei U der Unterraum von \mathbb{R}^4 gegeben durch

$$U = \left\langle \begin{pmatrix} 1\\2\\0\\3 \end{pmatrix}, \begin{pmatrix} 2\\1\\-1\\4 \end{pmatrix} \right\rangle.$$

Finden Sie eine Basis von U^{\perp} .

Lösung:

Es gilt

$$U^{\perp} = \{ \ell \in (\mathbb{R}^4) * \mid \ell(u) = 0 \ \forall u \in U \}$$

= \{ \ell \in (\mathbb{R}^4) * \quad \ell \ell (e_1 + 2e_2 + 3e_4) = 0, \ell (2e_1 + e_2 - e_3 + 4e_4) \},

wobei (e_1, e_2, e_3, e_4) die Standardbasis von \mathbb{R}^4 darstellt.

Da $\dim(U)=2$ gilt nach der Dimensionsforme
l $\dim(U^\perp)=2.$ Zwei linear unabhängige Vektoren in
 U^\perp sind zum beispiel

$$e_1^* + e_2^* - e_3^* - e_4^*, \quad 3e_1^* + 2e_3^* - e_4^*.$$

3.A2 [4 Punkte] Es sei $\mathcal{B} = (e_1, e_2, e_3, e_4, e_5)$ die Standardbasis des \mathbb{R}^5 . Betrachten Sie die lineare Abbildung

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} := \begin{pmatrix} x_1 + x_3 + 2x_5 \\ x_2 + 4x_3 \\ -3x_1 + 2x_2 + 5x_3 - x_4 + 8x_5 \\ x_1 - x_2 + x_5 \\ 6x_3 + 2x_4 - x_5 \end{pmatrix}$$

wobei die Vektoren bezüglich der Basis \mathcal{B} aufgefasst werden.

Es sei nun $\mathcal{C} = (e_1 + e_2, e_1 + e_3, e_4, e_3 - e_5, 2e_3)$ eine weitere Basis. Berechnen Sie die Abbildungsmatrix $[T^*]_{\mathcal{B}^*}^{\mathcal{C}^*}$ der dualen Abbildung T^* bezüglich der zu \mathcal{B} und \mathcal{C} dualen Basen.

Lösung:

Es gilt $[T^*]_{\mathcal{B}^*}^{\mathcal{C}^*} = ([T]_{\mathcal{C}}^{\mathcal{B}})^t$, das heisst wir müssen lediglich die Abbildungsmatrix der Abbildung

T bezüglich der Basen $\mathcal B$ und $\mathcal C$ finden, und diese dann transponieren. Wir berechnen

$$T(e_1) = e_1 - 3e_3 + e_4 = (e_1 + e_3) + e_4 - 2 \cdot 2e_3$$

$$T(e_2) = e_2 + 2e_3 - e_4 = (e_1 + e_2) - (e_1 + e_3) - e_4 + \frac{3}{2} \cdot 2e_3$$

$$T(e_3) = e_1 + 4e_2 + 5e_3 + 6e_5 = 4(e_1 + e_2) - 3(e_1 + e_3) - 6(e_3 - e_5) + 7 \cdot 2e_3$$

$$T(e_4) = -e_3 + 2e_5 = -2(e_3 - e_5) + \frac{1}{2} \cdot 2e_3$$

$$T(e_5) = 2e_1 + 8e_3 + e_4 - e_5 = 2(e_1 + e_3) + e_4 + (e_3 - e_5) + \frac{5}{2} \cdot 2e_3$$

und erhalten somit

$$[T]_{\mathcal{C}}^{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 4 & 0 & 0 \\ 1 & -1 & -3 & 0 & 2 \\ 1 & -1 & 0 & 0 & 1 \\ 0 & 0 & -6 & -2 & 1 \\ -2 & \frac{3}{2} & 7 & \frac{1}{2} & \frac{5}{2} \end{pmatrix}.$$

Also gilt

$$[T^*]_{\mathcal{B}^*}^{\mathcal{C}^*} = \begin{pmatrix} 0 & 1 & 1 & 0 & -2 \\ 1 & -1 & -1 & 0 & \frac{3}{2} \\ 4 & -3 & 0 & -6 & 7 \\ 0 & 0 & 0 & -2 & \frac{1}{2} \\ 0 & 2 & 1 & 1 & \frac{5}{2} \end{pmatrix}.$$

Im Folgenden sei V ein Vektorraum über einem Körper \mathbb{K} .

- **4.A1** [4 Punkte] Sei $\{v_1, \ldots, v_n\} \subset V$ linear unabhängig und sei $w \in V$ beliebig. Zeigen oder widerlegen Sie, dass $\{v_1 + w, \ldots, v_n + w\}$ genau dann linear abhängig ist, wenn $w \in \langle v_1, \ldots, v_n \rangle$.
 - Im Falle, dass die Aussage richtig ist, argumentieren Sie ob $\{v_1 + w, \dots, v_n + w\}$ auch dann noch linear abhängig ist, wenn $w \notin \langle v_1, \dots, v_n \rangle$.
 - Im Falle, dass die Aussage falsch ist, geben Sie eine notwendige und hinreichende Bedingung an w an, sodass $\{v_1 + w, \dots, v_n + w\}$ linear abhängig ist.

Lösung:

Wir behaupten, dass die Aussage falsch ist.

Angenommen $\{v_1 + w, \dots, v_n + w\}$ ist linear abhängig, dann gibt es $\lambda_1, \dots \lambda_n \in \mathbb{K}$, wobei nicht alle Elemente 0 sind, sodass

$$0 = \lambda_1(v_1 + w) + \dots + \lambda_n(v_n + w) = \lambda_1 v_1 + \dots + \lambda_n v_n + \left(\sum_{i=1}^n \lambda_i\right) w.$$
 (1)

Falls $w \notin \langle v_1, \dots, v_n \rangle$, so sind $\{v_1, \dots, v_n, w\}$ linear unabhängig und aus (1) folgt $\lambda_1 = \dots = \lambda_n = 0$ – ein Widerspruch.

Ist nun $w \in \langle v_1, \dots, v_n \rangle$, also $w = \mu_1 v_1 + \dots + \mu_n v_n$ für $\mu_1, \dots, \mu_n \in \mathbb{K}$, so können wir (1) als

$$0 = (\lambda_1 + \left(\sum_{i=1}^n \lambda_i\right) \mu_1) v_1 + \dots + (\lambda_n + \left(\sum_{i=1}^n \lambda_i\right) \mu_n) v_n.$$

schreiben. Da $\{v_1, \ldots, v_n\}$ linear unabhängig ist, müssen alle Koeffizienten in der letzten Gleichung 0 sein. Insbesondere muss gelten $\sum_{i=1}^{n} \lambda_i \neq 0$ und somit

$$\mu_i = -\frac{\lambda_i}{\sum_{i=1}^n \lambda_i}$$

für alle $1 \leq i \leq n$. Das bedeutet aber auch, dass die Summe $\sum_{i=1}^{n} \mu_i = -1$ ergeben muss. Das ist eine sehr starke Einschränkung für den Vektor w und sicherlich nicht für alle $w \in \langle v_1, \ldots, v_n \rangle$ erfüllt. Zum Beispiel nicht für $w = 2v_1$.

Andererseits gilt für alle $w = \mu_1 v_1 + \cdots + \mu_n v_n$ mit $\sum_{i=1}^n \mu_i = -1$, dass $\{v_1 + w, \dots, v_n + w\}$ linear abhängig ist, denn

$$-\mu_1(v_1+w)-\cdots-\mu_n(v_n+w)=-\mu_1v_1-\cdots-\mu_nv_n+\left(\sum_{i=1}^n-\mu_i\right)w=-w+w=0.$$

4.A2 [2 Punkte] Sei $\{v_1, v_2, v_3\} \subset V$ linear unabhängig.

Zeigen Sie, dass $\{v_1 - v_2, v_2 - v_3, v_1 + v_3\}$ genau dann linear unabhängig ist, wenn $2 \neq 0$ in \mathbb{K} gilt.

Lösung:

Sei W Unterraum von V mit der geordneten Basis $\mathcal{B} = (v_1, v_2, v_3)$, also insbesondere $W = \langle v_1, v_2, v_3 \rangle$. Sei $T \in \text{End}(W)$ die eindeutige lineare Abbildung, für die gilt $T(v_1) = v_1 - v_2$, $T(v_2) = v_2 - v_3$ und $T(v_3) = v_1 + v_3$. Dann ist die Darstellungsmatrix von T gegeben durch

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

Und insbesondere ist

$$\det(T) = 1 \cdot \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 0 & 1 \\ -1 & 1 \end{vmatrix} = 2$$

 $\{v_1-v_2,v_2-v_3,v_1+v_3\}$ ist genau dann linear unabhängig, wenn $\{T(v_1),T(v_2),T(v_3)\}$ linear unabhängig ist, also genau dann, wenn $[T]^{\mathcal{B}}_{\mathcal{B}}$ vollen Rang besitzt. Dies ist genau dann der Fall, wenn $[T]^{\mathcal{B}}_{\mathcal{B}}$ invertierbar ist und also genau dann, wenn $2 \in \mathbb{K}^{\times}$, bzw. wenn $2 \neq 0$ gilt in \mathbb{K} .

Es sei V ein endlich-dimensionaler Vektorraum über einem Körper \mathbb{K} .

5.A1 [2 Punkte] Zeigen Sie, dass die Abbildung $\tau_V \colon V \to V^{**}, \ v \mapsto (\ell \mapsto \ell(v))$ linear ist.

Lösung:

Es seien $v, w \in V$ und $\lambda \in \mathbb{K}$. Dann gilt für alle $\ell \in V^*$, dass

$$\tau_V(v + \lambda w)(\ell) = \ell(v + \lambda w) = \ell(v) + \lambda \ell(w) = \tau_V(v)(\ell) + \lambda \tau_V(w)(\ell) = (\tau_V(v) + \lambda \tau_V(w))(\ell).$$

Somit gilt $\tau_V(v + \lambda w) = \tau_V(v) + \lambda \tau_V(w)$, also ist τ_V linear.

5.A2 [4 Punkte] Zeigen Sie, dass τ_V einen Isomorphismus zwischen V und seinem Bidualraum V^{**} beschreibt.

Hinweis: Sie dürfen ohne Beweis annehmen, dass $\dim(V) = \dim(V^{**})$ gilt.

Lösung:

Da wir annehmen dürfen, dass $\dim(V) = \dim(V^{**})$ gilt, reicht es zu zeigen, dass τ_V injektiv ist. Es sei $\mathcal{B} = \{b_1, \dots, b_n\}$ eine Basis von V.

Angenommen $\tau_V(v) = 0$. Dann ist $\ell(v) = 0$ für alle $\ell \in V^*$. Schreiben wir $v = \lambda_1 b_1 + \cdots + \lambda_n b_n$ in der Basis \mathcal{B} und werten v in der dualen Basis $\mathcal{B}^* \subseteq V^*$ aus, so erhalten wir

$$0 = b_i^*(v) = \lambda_i$$

für alle $1 \le i \le n$. Also muss v = 0 gelten und folglich ist τ_V injektiv.

Injektive lineare Abbildungen zwischen endlich-dimensionalen Vektorräumen derselben Dimension sind auch surjektiv, also insbesondere bijektiv. Daher ist τ_V ein Isomorphismus zwischen V und sienem Bidualraum V^{**} .

6.A1 [2 Punkte] Finden Sie die Lösungsmenge $L(S) \subseteq \mathbb{R}^3$ des folgenden linearen Gleichungssystems (S):

$$3a + 3b - c = 5$$

 $2a + c = 0$
 $8a + 6b - c = 10$
 $a - 3b + 3c = -5$

Lösung:

Wir schreiben das Gleichungssystem in eine Matrix

$$\begin{pmatrix}
3 & 3 & -1 & | & 5 \\
2 & 0 & 1 & | & 0 \\
8 & 6 & -1 & | & 10 \\
1 & -3 & 3 & | & -5
\end{pmatrix}$$

und wandeln sie in reduzierte Zeilenstufenform um:

$$\begin{pmatrix} 3 & 3 & -1 & | & 5 \\ 2 & 0 & 1 & | & 0 \\ 8 & 6 & -1 & | & 10 \\ 1 & -3 & 3 & | & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 12 & -10 & | & 20 \\ 0 & 6 & -5 & | & 10 \\ 0 & 30 & -25 & | & 50 \\ 1 & -3 & 3 & | & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 0 & | & 0 \\ 0 & 6 & -5 & | & 10 \\ 0 & 0 & 0 & | & 0 \\ 1 & -3 & 3 & | & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 3 & | & -5 \\ 0 & 6 & -5 & | & 10 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

Mit anderen Worten ist (S) also äquivalent zu

$$a = 3b - 3c - 5$$
$$b = \frac{5}{6}c + \frac{5}{3}.$$

Wir erhalten die Lösungsmenge

$$L(S) = \{(-\frac{t}{2}, \frac{5(2+t)}{6}, t) \in \mathbb{R}^3 \mid t \in \mathbb{R}\}.$$

6.A2 [4 Punkte] Es sei $A \in M_{4\times 3}(\mathbb{R})$ jene Matrix ist, für die das lineare Gleichungssystem (S) als Ax = b, für einen Vektor $b \in \mathbb{R}^4$ geschrieben werden kann. Wir definieren r = rk(A), s = 4 - r und t = 5 - r. Finden Sie invertierbare Matrizen P und Q, sodass

$$PAQ = \begin{pmatrix} \mathbf{1}_r & \mathbf{0}_{r \times s} \\ \mathbf{0}_{t \times r} & \mathbf{0}_{t \times s} \end{pmatrix}.$$

Lösung:

Aus der vorherigen Aufgabe sehen wir, dass ${\rm rk}(A)=2$ gilt. Wenn wir also eine Basis des Kerns der Matrix

$$\begin{pmatrix} 3 & 3 & -1 \\ 2 & 0 & 1 \\ 8 & 6 & -1 \\ 1 & -3 & 3 \end{pmatrix}$$

suchen, reicht es, ein einziges nicht-triviales Element in $\ker(A)$ zu finden, zum Beispiel den Vektor

$$u_3 = \begin{pmatrix} -3 \\ 5 \\ 6 \end{pmatrix}.$$

Wir erweitern $\{u_3\}$ zu einer Basis $\mathcal{B} = (u_1, u_2, u_3)$ des \mathbb{R}^3 , wobei wir

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

wählen. Dann definieren wir $w_1 = Au_1, w_2 = Au_2$ und erweitern $\{w_1, w_2\}$ zu einer Basis $\mathcal{C} = (w_1, w_2, w_3, w_4)$ des \mathbb{R}^4 , indem wir

$$w_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ w_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

wählen. Nun gilt

$$[L_A]_{\mathcal{C}}^{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

und daher

$$[L_A]_{\mathcal{C}}^{\mathcal{B}} = [\mathrm{id}_{\mathbb{R}^5}]_{\mathcal{E}_4}^{\mathcal{C}} \cdot [L_A]_{\mathcal{C}}^{\mathcal{B}} \cdot [\mathrm{id}_{\mathbb{R}^4}]_{\mathcal{B}}^{\mathcal{E}_4}.$$

Wir wählen also

$$P = [\mathrm{id}_{\mathbb{R}^5}]_{\mathcal{E}_4}^{\mathcal{C}}, \ Q = [\mathrm{id}_{\mathbb{R}^4}]_{\mathcal{B}}^{\mathcal{E}_4}.$$

Eine Rechnung ergibt

$$P = \begin{pmatrix} 0 & 0 & \frac{1}{10} & \frac{1}{5} \\ 0 & 0 & \frac{1}{30} & -\frac{4}{15} \\ 1 & 0 & -\frac{2}{5} & \frac{1}{5} \\ 0 & 1 & -\frac{1}{5} & -\frac{2}{5} \end{pmatrix}$$

$$Q = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 5 \\ 0 & 0 & 6 \end{pmatrix}.$$

6.A3 [2 Punkte] Bestimmen Sie den Rang der Matrix

$$B = \begin{pmatrix} 0 & -9 & 3 \\ 1 & 4 & 0 \\ 2 & 6 & -1 \\ 2 & -1 & 0 \end{pmatrix} \in M_{4 \times 3}(\mathbb{R})$$

und entscheiden Sie ob A und B äquivalent sind, oder nicht.

Lösung:

Wir wenden das Zeilenstufenverfahren an, um den Rang der Matrix B zu bestimmen.

$$\begin{pmatrix}
0 & -9 & 3 \\
1 & 4 & 0 \\
2 & 6 & -1 \\
2 & -1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & -9 & 3 \\
1 & 4 & 0 \\
0 & -2 & -1 \\
0 & -9 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 4 & 0 \\
0 & -2 & -1 \\
0 & -9 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 4 & 0 \\
0 & -2 & -1 \\
0 & -9 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 4 & 0 \\
0 & -2 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{pmatrix}.$$

Die Matrix B hat also Rang 3. Da äquivalente Matrizen denselben Rang haben und A Rang 2 hat können die Matrizen A und B nicht äquivalent sein.