
ANALYSIS II - MOCK EXAM - 180 MIN

Overall grade of the exam in the scale 1-6 is computed by rounding 1 + 5P/140,
where P is the number of points obtained (remember that on top of this, your
eventual bonus from problem sets will be added).

1. Multiple Choice (MC) — 60 points

Each exercise has some questions that can either be true or false. Each
correct answer is worth 1 point. Each unanswered question is worth 0
points. Calling Nwrong the number of wrong answers, the corresponding
penalization will be computed as follows:

penalization =


−0 points if 0 ≤ Nwrong ≤ 10;

−Nwrong + 10 points if 11 ≤ Nwrong ≤ 20;

−2Nwrong + 30 points if 21 ≤ Nwrong ≤ 30.

The number of points in the MC part is computed as the number of
correct answers plus the penalization. Nevertheless, the final score of
the MC part will never be negative (it will be capped at zero).

Exercise 1. Let U := {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4} and f(x, y) = sin(xy)− y4.
Say whether the following statements are true or false.

(1) U is connected. True
(2) U is simply connected. False
(3) U is compact. True
(4) f(U) ⊂ R is compact. True
(5) f(U) ⊂ R is connected. True
(6) There are two real numbers a < b such that f(U) = [a, b]. True

Exercise 2. Let X ⊂ R2 with X 6= ∅ and X 6= R2.

(1) If X is not open, then it is necessarily closed. False
(2) If X is convex, then it is necessarily connected. True
(3) If X is bounded, then it is necessarily compact. False
(4) If X is complete, then it is necessarily closed. True

Exercise 3. You are given some pairs (X, f) where f : X → X is some continuous
function and X is some metric space.

(1) If X = [0, 1] ⊂ R and f(x) := sin(2x), then the Banach Fixed Point
Theorem assumptions are satisfied. False

(2) If X = [0, 1] ⊂ R and f(x) := x+x2, then the Banach Fixed Point Theorem
assumptions are satisfied. False

(3) If X = [0,∞) and f(x) = x
100+2x , then the Banach Fixed Point Theorem

assumptions are satisfied. True

Exercise 4. Which of the following formulas are correct for all smooth functions
u, v : Rn → (0,∞)?

(1) ∂i(e
u2

) = eu
2

2u∂iu. True
(2) ∂i∇u = ∇∂iu. True
(3) ∂i(u/v) = (∂iu/v) + (u/∂iv). False
(4) div(u∇u) = |∇u|2 + uHu, where Hu is he Hessian matrix of u. False

1
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Exercise 5. Consider the function f : R3 → R given by f(x, y, z) := xy2

x2+y2+z2 for

(x, y, z) 6= (0, 0, 0), and f(0, 0, 0) = 0. Then f is of class

(1) C∞(R3 \ {0}). True
(2) C0(R3). True
(3) C1(R3). False

Exercise 6. Assume that f ∈ C∞(R3) satisfies

f(x) = x2
1 + x4

3 + o(|x|5) as |x| → 0,

where x = (x1, x2, x3). Then we can deduce that

(1) ∇f(0) = (0, 0, 0)T . True

(2) ∂2f
∂x2

1
(0) = 1. False

(3) ∂x1∂x2f(0) = 0. True

(4) limx→0
∂2f
∂x2

3
(x) = 0. True

Exercise 7. Let f ∈ C∞(R3) and α ∈ R such that

∇f(0) =

0
0
0

 and Hf(0) =

1 α 0
α 2 0
0 0 1

 ,

where Hf denotes the Hessian matrix. Then

(1) for all α ∈ R, 0 is not a local maximum point for f . True

(2) for all α >
√

2, 0 is a saddle point for f . True

(3) for all α <
√

2, 0 is a local minimum point for f . False

(4) for α 6= ±
√

2, the function ∇f : R3 → R3 is a diffeomorphism between some
open set containing zero 0 and another open set containing ∇f(0). True

Exercise 8. Consider the set V := {(x, y) ∈ R2 : y4 + y2 = x3 + x}.
(1) V is a graph with respect to the x-variable around (1, 1). True
(2) V is a graph with respect to the y-variable around (0, 0). True
(3) V is a graph with respect to the y-variable around (1, 1). True
(4) V is a graph with respect to the x-variable around (0, 0). False

Exercise 9. Consider F ∈ C1(R3,R2) such that

F (0, 0, 1) = (2,−2)T and JF (0, 0, 1) =

(
1 1 −2
0 1 −1

)
,

and let M := F−1((2,−2)T ). For t < 1 let γ(t) := (sin(2t), t+ 1
2 t

2, cos(t)
1−t ).

(1) (F ◦ γ)′(0) = (0, 0)T . False
(2) In a small neighbourhood of the point (0, 0, 1) ∈ R3, M is a smooth manifold

of dimension 2. False
(3) In a small neighbourhood of the point (0, 0, 1) ∈ R3, M is a smooth manifold

of dimension 1. True
(4) The vector γ′(0) is normal to M at the point (0, 0, 1). False
(5) There exists φ, ψ ∈ C1((−δ, δ),R) such that

F (φ(y), y, ψ(y)) = (2,−2)T for all y ∈ (−δ, δ). True

(6) For sufficiently small ε > 0, the set F (Bε((0, 0, 1))) must be open in R2.
True

Exercise 10. Consider the functions

f(x, y) =
sin(xy)

x2 + y2
, g(x, y) = (x+ 1) log(x2 + y2),
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and the regions

A := {x2 + y2 ≥ 1}, B := {0 < x2 + y2 ≤ 1}.

(1)
´
A
|f | <∞. False

(2)
´
B
|f | <∞. True

(3)
´
A
|g| =∞. True

(4)
´
B
|g| =∞. False

Exercise 11. For α ∈ R, consider the maps

Φ: (x, y) 7→ (xy, x2 − y2) and Ψ: (x, y) 7→ (x+ y, αx− y, y + 1).

(1) If E ⊂ R2 is compact then vol2(Φ(E)) = 2
´
E

(x2 + y2) dxdy. True

(2) If E ⊂ R2 is compact then vol2(Φ(E)) = 2
´
E

(x2 + 2y2) dxdy. False

(3) If E ⊂ R2 is compact then vol2(Ψ(E)) = 2αvol2(E). False

(4) If E ⊂ R2 is compact then vol2(Ψ(E)) =
√

2|α+ 1|vol2(E). False

(5) If E ⊂ R2 is compact then vol2(Ψ(E)) =
√

2(α2 + α+ 1)vol2(E). True

Exercise 12. For α ≥ 0 consider the integral Iα :=
´
R3 e
−x2−y2−α|z| dx dy dz.

(1) I0 =
√
π. False

(2) αIα = I1. True
(3) limα→+∞(α+

√
α)Iα = 2π. True

Exercise 13. Consider the vector fields

X := x1e1, Y := x2e1 and Z :=
−x2e1 + x1e2

x2
1 + x2

2

,

all defined in U := R2 \ {0}. Let γ ∈ C1([0, 1], U) be any closed curve.

(1) There is necessarily u ∈ C1(U) such that ∇u = X in U . True
(2) There is necessarily v ∈ C1(U) such that ∇v = Y in U . False
(3) There is necessarily w ∈ C1(U) such that ∇w = Z in U . False
(4) Necessarily,

´
γ
X · dγ = 0. True

(5) Necessarily,
´
γ
Y · dγ = 0. False

(6) Necessarily,
´
γ
Z · dγ = 0. False

Exercise 14. Consider the ordinary differential equation

y′(x) = F (x, y(x)), y(0) = α.

For each of the following choices of F and α, say whether you can use the Cauchy-
Lipschitz-Picard-Lindelöf Theorem to deduce, for some small δ > 0, the existence
and uniqueness of a solution

x 7→ y(x), x ∈ I := (−δ, δ).

(1) F (x, y) = y2, α = 0 True
(2) F (x, y) = x log y, α = 1 True

(3) F (x, y) = y +
√
|x|, α = 0 True

(4) F (x, y) = x log y, α = 0 False

2. Box Answer — 20 Points

Only the final answer will be graded in a “All-or-Nothing” fashion.

Exercise 15 (2pt). Let X := {(x, y) | 1 ≤ x ≤ 2} ⊂ R2. Give an example of a
nonconstant 1

2 -Lipschitz contraction f : X → X.

Proof. f(x) := ( 3
2 , 0) + 10−10x. �
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Exercise 16 (2pt). Give an explicit example of a continuous and nonconstant
function g : R2 → R2 and a compact set K ⊂ R2 such that g−1(K) is not compact.

Proof. (x, y) 7→ (arctan(x), arctan(y)) �

Exercise 17 (2pt). Give an explicit example of a C∞ bijective function g : R→ R
such that the inverse g−1 is not of class C1.

Proof. x 7→ x5. �

Exercise 18 (3pt). Give an explicit example of a function f ∈ C2(R2,R2) with
the following properties: f−1(K) is compact whenever K ⊂ R2 is compact, and f
is not a diffeomorphism of R2.

Proof. (x, y) 7→ (x + x2, y) (the image is contained in [− 1
4 ,∞) × R, and this map

sends unbounded sets to unbounded sets). �

Exercise 19 (2pt). Sketch two open connected sets U1, U2 ⊂ R2 such that U1∩U2

is not connected and U1 ∪ U2 is connected.

Proof. U1 := B1 \B1/2 and U2 := (− 1
10 ,

1
10 )× R. �

Exercise 20 (3pt). Give an explicit example of a function in C2(R3) \ C3(R3).

Proof. (x, y, z) 7→ max{x, 0}3 or (x, y, z) 7→ x5

x2+y2+z2 . �

Exercise 21 (3pt). Let φ : R3 → R be a differentiable function. Give the formula
for the normal vector N ∈ R4 to the graph of φ at a point X = (x1, x2, x3, φ(x)) ∈
R4.

Proof.

N(X) =
1√

1 + ∂1φ(x)2 + ∂2φ(x)2 + ∂3φ(x)2 + ∂4φ(x)2


−∂1φ(x)
−∂2φ(x)
−∂3φ(x)
−∂4φ(x)

1


or also

N(X) =
1√

1 + |∇φ(x)|2

(
−∇φ(x)

1

)
�

Exercise 22 (3pt). Give an explicit example of a smooth nonconstant curve
γ : R→ R3 such that γ(R) is not a smooth manifold.

Proof. γ(t) := (0, 0, t2). �

3. Short Problems – 40 Points

To earn a full score, you must rigorously prove all your assertions.
Each question will be graded separately, so you can assume the results
of other questions are given, even if you haven’t solved them.

Exercise 23 (11pt). Let K = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and f : K → R be the
function

f(x, y) = (x2 + y2)eαx,

where α ∈ R is a parameter.

(1) Prove that f attains a maximum and minimum on K. [2pt]
(2) Calculate all the critical points of f in the interior of K, in terms of the

parameter α. [4pt]
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(3) Calculate the minimum and maximum values of f on K, in terms of the
parameter α. [5pt]

Proof. (1) The set K is compact, so by the Weierstrass Theorem f attains its
maximum and minimum value [1pt].
K is closed (being the preimage of the closed interval (−∞, 1] trough

the continuous map (x, y) 7→ x2 + y2). K is bounded because by definition
its elements have norm less or equal then 1. Hence K is compact [1pt for
actually proving that K is compact].

(2) We need to solve the system
0 = ∂xf(x, y) = (2x+ αx2 + αy2)eαx,

0 = ∂yf(x, y) = 2yeαx,

x2 + y2 < 1.

[2pt for the correct system]
From the second equation, y = 0, so we get{

2x+ αx2 = 0,

|x| < 1,
⇔ (x = 0, α ∈ R) or (x = − 2

α , |α| > 2).

In conclusion the interior critical points are{
{(0, 0)} if |α| ≤ 2, [1pt]

{(0, 0), (− 2
α , 0)} if |α| > 2. [1pt]

(3) The maximum/minimum points of f are either interior critical points or
they lie on ∂K.

We study f |∂K . Notice that x2 + y2 ≡ 1 on ∂K, so if we set F (x, y) :=
eαx, then

max
∂K

f = max
∂K

F min
∂K

f = min
∂K

f.

We study F on ∂K with the method of Lagrange multipliers, the La-
grangian being

L(x, y, λ) := eαx − λ(x2 + y2 − 1).

We need to solve the system
0 = ∂xL(x, y, λ) = αeαx − 2λx,

0 = ∂yL(x, y) = −2λy,

0 = ∂yL(x, y) = x2 + y2 − 1.

Since λ 6= 0 (otherwise the 1st equation would not hold) we find y = 0.
Then the 3rd equation gives x = ±1 and the 1st can be solved for λ. SO
the critical points on ∂K must be among

(−1, 0) (1, 0).

[2pt for correct computation of lagrange multipliers] Since ∂K is compact
(it is closed inside a compact set) we known that the extrema of f |∂K must
be attained at such a critical point.

Hence the global extrema of f are to be found among{
{(0, 0), (±1, 0)} if |α| ≤ 2,

{(0, 0), (− 2
α , 0), (±1, 0)} if |α| > 2.
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[2pt for correct reasoning among where the max/min can be found] Com-
puting f : {

{0, e±α} if |α| ≤ 2,

{0, 4e−2

α2 , e±α} if |α| > 2.

Since 4e−2

α2 < e|α| for all α > 2, the minimum is always 0 and the maximum

always e|α|. [1pt for the correct values]
Alternative for boundary: we can study f |∂K by parametrising the

boundary, which is a circle, that is study

max
θ∈[0,2π]

/ min
θ∈[0,2π]

f(cos θ, sin θ) = max
θ∈[0,2π]

/ min
θ∈[0,2π]

eα cos θ = e|α|/e−|α|.

Slick solution [5pt]: notice that for all (x, y) ∈ K it holds:

0 ≤ f(x, y) = (x2 + y2)eαx ≤ eαx ≤ e|αx| ≤ e|α|,

because 0 ≤ |x| ≤
√
x2 + y2 ≤ 1. Since f(0, 0) = 0 and f(sign(α), 0) = e|α|

we deduce that these are the max and the min of f in K.
�

Exercise 24 (11pt). Consider the linear differential equation

y′′(x)− y′(x) = f(x), x ∈ R.

(1) Determine the most general solution of the associated homogeneous equa-
tion. [3pt]

(2) Determine one particular solution in the case f(x) = e−2x [3pt].

Consider the liner system

z′(t) = Az(t), A =

(
α 1
0 −1

)
,

(1) Solve the system for α = −1 and z(0) = (1, 1)T . [5pt]
(2) Determine the set of α’s for which, independently from the initial condition

z(0), |z(t)| stays bounded as t→ +∞. [5pt]

Proof. (1) All functions of the form

y(x) = Aex +B, A,B ∈ R, [2pt for writing the correct expression]

are solutions. Since they span a 2 dimensional linear space, and the order
of the equation (which is linear!) is 2 we deduce that all solutions are of
this form. [1 points for motivating why all solutions have that form]

(2) y(x) := 1
6e
−2x as can be immediately checked by substitution. [3pt, 1pt for

the meaningful attempt βe−2x.]
(3) The system to solve is

z′1 = −z′1 + z2,

z′2 = −z2,

z1(0) = z2(0) = 1.

The second equation immediately gives z2(t) = e−t. The first becomes

z′1 + z1 = e−t, z1(0) = 1.

This linear ODE with constant coefficients can be solved multiplying both
sides by et and recognising a derivative on the LHS:

(etz1)′ = etz′1 + etz1 = 1 = (t)′ ⇒ etz1 = t+ C.
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So one immediately finds from the initial conditions the value of the con-
stant C = 1, thus:

z1(t) = te−t + e−t.

In other words

z(t) = e−t
(

1 + t
1

)
.

Alternatively one can try to find a particular solution of the form te−t.
[3 pt for finding the correct solution, 2 pt for the reasoning. 1pt for

writing te−t somewhere].
(4) Let this set be X ⊂ R. We claim X = (−∞, 0].

By the theory of linear differential equations, any solution z(t) is of the
form

zi(t) =

2∑
j=1

pij(t)e
λjt, i = 1, 2.

where λ1, λ2 are the eigenvalues of A, and {pij(t)} are suitable polynomials
of degree at most 2. If at least one of the eigenvalue is positive, then for sure
z(t) cannot stay bounded (at least for some initial conditions the coefficient
of the relative exponential will not be the zero polynomial).

Since the spectrum of A is {α, 1} this proves that α ≤ 0, i.e., X ⊂
(−∞, 0].

We need now to discuss the case α = 0. In this case the system is very
simple to solve and yields

z2(t) = Ae−t, z1(t) = B −Ae−t,
which is always bounded independently from the precise value of the con-
stants A,B. [2 pts for trying to work in the poly exp form, 2pt for finding
that α < 0 works, 1pt for the case α = 0]

�

Exercise 25 (18pt). Consider the region

U := {(x, y, z) ∈ R3 | y2 + z2 < x, 1 < x < 4},
the surface

M := {(x, y, z) ∈ R3 | y2 + z2 = x, 1 < x < 4},
and the vector fields

E(x, y, z) := (x2 − 5x+ 4,−2xy, z)T , B(x, y, z) := (x2,−yx,−zx)T .

(1) Sketch the intersection of U with the plane {y = 0} and the one with the
plane {x = 0}. Discuss the symmetries of U . Sketch U in 3D perspective
with the z axis pointing upwards, the x axis pointing right and the y axis
pointing top-right. [4 pt]

(2) Find a vector field A such that

B = curlA,

and compute the divergence of B. [4pt]
(Hint: try with A = (0,−zf(x), yg(x))T , for some simple functions

f(x), g(x) that you have to find.)
(3) Compute the flow of E across M (the normal of M points outside of U).

[4pt] (If needed, you may use the divergence theorem in a piecewise smooth
domain without proof.)

(4) Compute the flow of B across M (the normal of M points outside of U).
[6pt]

Proof. (1) ... Invariant by rotations in the (y, z) plane.
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(2) Computing curlA we find

curlA = (g(x) + f(x),−zg′(x),−zf ′(x)) [1pt ]

so the choice f(x) = g(x) = x2/2 works and gives

A = (0,−zx2/2, yx2/2)[2pt].

B thus has zero divergence being the curl of something [1pt ].
(3) We use the divergence theorem, since there is no flow of E on the disks

bounding the sides of U , i.e.: E1(1, ·, ·) = E1(4, ·, ·, ) = 0[2pt]. We compute
divE = −4[1pt] and the volume of U is

vol3(U) =

ˆ 4

1

{¨
{z2+y2≤x}

dy dz
}
dx = π

ˆ 4

1

x dx =
15π

2
,

so the flow is −30π[1pt], by the divergence theorem.
(4) We see our surface as the difference of two embeddings of the two disks:

D1 := {y2 + z2 ≤ 1}, D2 := {y2 + z2 ≤ 4},

with the map

Φ(y, z) = (y2 + z2, y, z).

Notice that the normal to M induced by this embedding is the opposite of
the outer normal of U , that is νΦ = −νM , indeed:

(∂yΦ× ∂zΦ)(y, z) =

2y
1
0

×
2z

0
1

 =

 1
−2y
−2z

 , νΦ :=
∂yΦ× ∂zΦ
|∂yΦ× ∂zΦ|

,

which points inside U (draw a picture at (y, z) = (0, 1)).
The positively oriented boundaries of Φ(D1),Φ(D2) are given by

σ1(t) := Φ(cos t, sin t) = (1, cos t, sin t),

σ2(t) := Φ(2 cos t, 2 sin t) = (4, 2 cos t, 2 sin t)

with 0 < t < 2π, respectively.
So by Stokes it holds:

−
ˆ
M

B · νM =

ˆ
M

curlA · νΦ =

ˆ
Φ(D2)

curlA · νΦ −
ˆ

Φ(D1)

curlA · νΦ

=

ˆ
Φ(∂D2)

A · d`−
ˆ

Φ(∂D1)

A · d`

=

ˆ 2π

0

A(σ2(t)) · σ′2(t) dt−
ˆ 2π

0

A(σ1(t)) · σ′1(t) dt

=

ˆ 2π

0

 0
−16 sin θ
16 cos θ

 ·
 0
−2 sin θ
2 cos θ

 dθ − 1

2

ˆ 2π

0

 0
− sin θ
cos θ

 ·
 0
− sin θ
cos θ

 dθ

= 32

ˆ 2π

0

cos2 θ + sin2 θ dθ − 1

2

ˆ 2π

0

cos2 θ + sin2 θ dθ

= 64π − π = 63π.

So we find
´
M
B · νM = −63π. [1 point for stokes, 2pt for setting up with

difference of domains, 2 pt for correct parametrisation/orientation, 1 point
for correct final numbers]

�
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4. Problem — 20 Points

To earn a full score, you must rigorously prove all your assertions.
Each question will be graded separately, so you can assume the results
of other questions are given, even if you haven’t solved them.

Problem 26 (20pt). Define

η(t) :=

{
exp(− tan2 t)

cos2 t for t ∈ (−π/2, π/2)

0 for t ∈ R \ (−π/2, π/2).

and, for all ε > 0 and t ∈ R,

ηε(t) :=
1

c0ε
η(t/ε), c0 :=

ˆ
R
η(s) ds.

Let L = p(d/dt) be some linear autonomous differential operator of order m ≥ 1,
with characteristic polynomial p ∈ R[X].

Suppose that u ∈ Cm(R) is a solution of a linear ordinary differential equation
Lu(t) = f(t) in the whole R, where f ∈ C0(R) is a given function.

Define

uε(t) :=

ˆ ∞
−∞

u(s)ηε(t− s)ds and fε(t) :=

ˆ ∞
−∞

f(s)ηε(t− s)ds.

(1) Prove that ηε belongs to C1(R) and has compact support in [−πε/2, πε/2].
How would you prove ηε ∈ C∞? [4pt]

(2) Prove that uε is of class C∞ and solves the ODE Luε(t) = fε(t). [4 pts]
(3) Compute c0 and prove that

´
R ηε(t)dt = 1 for all ε > 0. [4 pt]

(4) Prove that for any function of polyexponential form v(t) =
∑
qi(t) exp(αit),

where αi ∈ C and qi ∈ C[X] the functions vε(t) :=
´∞
−∞ v(s)ηε(t− s)ds are

also of polyexponential form.[4 pt]
(5) Prove that, for all T > 0,

lim
ε→0

max
[−T,T ]

|uε − u| → 0 as ε→ 0. [4 pt]

Proof. (1) We first observe that since η(t) = 0 for all |t| ≥ π/2, then ηε(t) =
0whenever |t/ε| ≥ π/2. This exactly means that η has compact support in
[−πε/2, πε/2].

In order to prove that η ∈ C0 we need to prove

lim
t→±π/2

η(t) = 0.

Indeed:

1

cos2 t
= O(1/t2), exp{− tan2 t} = exp{O(1/t2)} as t ↑ π/2−,

so we find

lim
t→π/2−

exp(− tan2 t)

cos2 t
= 0.

Similarly for t ↓ π/2+. Alternatively one can do a substitution:

lim
t→π/2−

exp(− tan2 t)

cos2 t
= lim

cos2(t)=y→0+
y−2 exp{1− y2

y2
} = 0.

In order to prove C1 we need to show that

lim
t→±π/2

η′(t) = 0.
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Computing the derivative

η′(t) = −2 exp{− tan2 t} sin t cos t+ tan3 t

cos4(t)
,

once again the factor = sin t cos t+tan3 t
cos4(t) has a polynomial divergence at ±π/2

while the factor −2 exp{− tan2 t} has a superexponential damping, thus
η′(t)→ 0.

It is clear that keeping differentiating η we will get a more complicated ra-
tional function of cos t, sin tmultiplying the exponential factor exp{− tan2 t},
which goes to zero faster than any power of t, so the same reasoning will
apply to all derivatives.

(2) Since uε is an integral over a compact interval depending on a parameter,

uε(t) =
´ t+π
t−π Fε(s, t) ds, by the theory seen in class it suffices to show that

the function

Fε(s, t) := u(s)ηε(s− t)
is C∞ in the variable t! But, even if u is only of class Cm, once we fix s,
the function F (s, ·) has the same regularity of ηε, which is C∞.

Additionally, F is of class Cm in the joint variables (s, t).
We compute, changing variables (s = t− r) and using the differentiation

under the integral (which are compactly supported!)

Luε(t) =

m∑
j=0

pj
dm

dtm

ˆ
R
u(s)ηε(t− s) ds

=

m∑
j=0

pj
dm

dtm

ˆ
R
u(t− r)ηε(r) dr

=

ˆ
R

m∑
j=0

pj
dmu

dtm
(t− r)ηε(r) dr

=

ˆ
R
Lu(t− r)ηε(r) dr

=

ˆ
R
f(t− r)ηε(r) dr

=

ˆ
R
f(s)ηε(t− r) ds = fε(t).

(3) By the change of variables formula tan t = s, and dt = cos2(t)ds, we find

c0 =

ˆ
R
η(t) dt =

ˆ π/2

−π/2
exp{− tan2(t)} dt

cos2(t)

=

ˆ
R
e−s

2

ds =
√
π.

Now, by scaling t = εt′ we findˆ
R
ηε(t) dt =

1

c0ε

ˆ
R
η(t/ε) dt =

1

c0ε

ˆ
R
η(t′) εdt = 1.

(4) By the theory of linear differential equations we established that a function
is a poly–exponential if and only if it solves a linear differential equation
with constant coefficients.

Hence, v must solve an appropriate linear ODE Lv = 0, and so the
previous three points imply that Lvε = 0. But then this in turn implies
that vε must be of polyexponential form!.
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(5) We first realise that

u(t) = u(t) · 1 =

ˆ
R
u(t)ηε(r) dr.

Now using again the shift of variables, estimate for |t| ≤ T :

|uε(t)− u(t)| =
∣∣∣ˆ

R
(u(t− r)− u(t))ηε(r) dr

∣∣∣
≤
ˆ
R
|u(t− r)− u(t)|ηε(r) dr

=

ˆ π/2

π/2

|u(t− εs)− u(t)|η(s) ds.

Now we use the mean value inequality

|u(t− εs)− u(t)| ≤ ε|s| max
[t−π/2,t+π/2]

|u′|

so we have

sup
|t|≤T

|uε(t)− u(t)| ≤ sup
|t|≤T

ˆ π/2

π/2

|u(t− εs)− u(t)|η(s) ds

≤ ε
(

sup
|t|≤T

max
[t−π/2,t+π/2]

|u′|
) ˆ π/2

π/2

|s|η(s) ds

≤ ε max
|ξ|≤T+π

|u′(ξ)|
ˆ π/2

π/2

|s|η(s) ds ≤ Cε as ε→ 0,

for a suitable constant C that depends on u, T and η.
�

5. Useful formulas and notation

The following standard notation is used in the whole exam:

• e1, . . . , en denote the standard basis of Rn.
• In R2, a “graph with respect to the x-variable”, is any set of the form
{(x, φ(x)) : x ∈ I} for some interval I and some function φ : I → R.
• Br(x) denotes the open Euclidean ball of radius r > 0 and center x ∈ Rn.

You can give for granted the following formulas:

•
´
R e
−t2 dt =

√
π.

• If Φ ∈ C1(Rn,Rm), m ≥ n, K ⊂ Rn compact, then

voln(Φ(K)) =

ˆ
K

{det(JΦ(x)T · JΦ(x))} 1
2 dx.

where JΦ is the Jacobi matrix, where ∂xiΦ
j(x) is located in the column i

and row j.
• If A = (A1, A2, A3)T is a vector field in R3 then

curlA = (∂2A3 − ∂3A2, ∂3A1 − ∂1A3, ∂1A2 − ∂2A1)T

• d
dt (tan t) = 1

cos2 t .
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