Problems marked with a $\left(^{*}\right)$ are a bit harder. Hints are available in the next page.

1.1. Recap Questions.

1. Let $\left\{x_{k}\right\}_{k \in \mathbb{N}} \subset[1,2] \subset \mathbb{R}$ be a sequence. Is it necessarily convergent?
2. Describe all differentiable functions $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=1 / x$ for all $x \neq 0$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and bounded, is it true that

$$
\int_{0}^{\pi / 2} f(\cos (x)) d x=\int_{0}^{1} \frac{f(t)}{\sqrt{1-t^{2}}} d t ?
$$

4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ have $f^{\prime \prime}(x)>0$ for all $x \geq 0$. Can f have a global maximum point?
5. Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map and let $Q:=[0,1] \times[0,1]$ be the unit square. How does $\phi(Q)$ look like? What are the possibilities?
6. Consider the vector space V of polynomials of degree less than 4 , and the function $D: V \rightarrow V$ which associates to a polynomial p its derivative p^{\prime}. Is D a linear map? Is so, what is the dimension of its null space?
1.2. From equations to drawings. Sketch the following subsets of $\mathbb{R}^{2}, \mathbb{R}^{3}$.
7. $A:=\left\{(x, y): x^{2}+y^{2}<1, y \geq x^{2}\right\}$
8. $B:=\left\{(x, y): y^{2}=x^{3}-x\right\}$
9. $C:=\left\{(x, y): \frac{\pi}{6}<\arctan (y / x)<\frac{\pi}{3}, 0<x<y\right\}$
10. $D:=\left\{(x, y, z): \sqrt{x^{2}+y^{2}}=1-z, 0<z<1\right\}$
11. $E:=\left\{(x, y, z): z=\sqrt{1+x^{2}+y^{2}}\right\}$
12. $F:=\{(x, y, z): z=\max \{|x|,|y|\}\}$
1.3. From drawings to equations. Express in terms of functions and equations the following sets.
13. The coordinates of a point in the plane that goes endlessly back and forth from the origin to the point $(-1,1)$.
14. A planar domain with two holes in it.
15. A bi-dimensional disk sitting inside the plane $\{x+y+z=0\}$ in \mathbb{R}^{3}.
16. A Pac-Man shaped domain in the plane.
17. A pyramid, whose base is a square, sitting in \mathbb{R}^{3}.

Hints:

1.2 As ETH students you have a license for Mathematica. All these plots are one-linecommands using that software!
1.2.2 The set is clearly symmetric with respect to $y \mapsto-y$, so it's enough to plot qualitatively the function $y(x)=\sqrt{x^{3}-x}$, separately in the intervals $x \in[-1,0]$ and $x \in[0, \infty) \ldots$ From here you can use all the technology from Analysis I...
1.2.4 Try to figure out how D looks layerwise, i.e., as a planar domain once z is kept fixed.
1.2.5 If you known how to plot $z=f(s), s \geq 0$, then the set $\left\{(x, y, z): z=f\left(\sqrt{x^{2}+y^{2}}\right)\right\}$ is obtained rotating the plot of f around the z-axis...
1.3.1 Construct an appropriate function $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$, where t represents the time and $f(t)$ represents the position of the moving point at time t. You want f to be periodic in t and $f(t)$ to be aligned with the direction $(-1,0)$
1.3.3 Observation: the intersection of a round ball with a plane is a disk...
1.3.5 Take inspiration from 1.2.4 and 1.2.6...

